APPENDIX A

PROJECT DESCRIPTION

Appendix A1

Concept Design for Wastewater Disposal

Technical Memorandum

Date:	July 28 th , 2009
To:	Brian Beyak, P.Eng, Manitoba Hydro
From:	Jamie Ellis, P. Eng, AECOM
Project Number:	0217-200-07 (3) [Hydro Ref: 243 981 0100]
Subject:	Keeyask Infrastructure Project – North Access Road Start Up Camp
	Concept Design for Wastewater Disposal
Distribution:	Neil Klassen, C.E.T., AECOM Bob Romanetz, P.Eng, AECOM

1) Introduction

This technical memorandum is provided as Appendix A1 to the Environment Act Proposal submission for the Keeyask Infrastructure Project.

The North Access Road Start Up Camp is located at approximately km 177 north on PR280 (refer to Figure 1). The life of the start up camp is anticipated to be 2 to 3 years, with an occupancy ranging between approximately 125 (max) and 50 (min) persons, depending upon construction activities at the time.

2) Site Layout

Facilities at the start up camp will include the following (refer to Figure 2):

- Accommodation units, with washrooms and laundry facilities
- Offices and stores
- Kitchen and Dining Hall
- Fire Truck/Ambulance Garage
- Generator
- Electrified parking stalls
- Water Treatment Plant (WTP) with water storage tanks
- Groundwater well

Furthermore, a gatehouse will also be built to control access to the North Access Road. As the gatehouse will be in service beyond the life of the camp, it is proposed that this building is served by a small pump out tank.

Technical Memorandum July 28th, 2009 Page 2

3) Alternatives Considered

At the outset of the design stage, the relative merits of various options for the disposal of wastewater from the start up camp were considered, as shown in the table below. The concept of greywater and blackwater separation was also considered.

Alternative	Description
A0	Black water trucked to Split Lake lagoon (currently overloaded – included for comparison only)
A1	Black water trucked to Split Lake lagoon with upgrades
A2	Truck All Sewage to Split Lake lagoon with upgrades
B1	Black water trucked to Gillam WWTP
B2	All sewage trucked to Gillam WWTP
C1	Black water trucked to Thompson WWTP
C2	All sewage trucked to Thompson WWTP
D	All sewage to on-site mechanical WWTP with drain field
E	All sewage to septic tank with drain field
F	Lagoon with discharge route

The analysis included a comparison of technical issues, potential for disruption (weather/freezing), training requirements, schedule risks and Class D cost estimates.

The preferred option was Alternative E, as it presented the lowest lifecycle cost, low potential for disruption and limited training requirements. As such, a concept design for an engineered drain field was prepared, as shown in the attached calculations.

4) Design Criteria

The principal reference for field design criteria is The Environment Act Regulation 83/2003 "Onsite Wastewater Management Systems".

5) Geotechnical Investigation

The field investigation at the proposed location for the Start Up Camp drain field was completed on July 21 and 22, 2009 by Jared Baldwin, EIT and Geoff Nolette, CET of AECOM. A total of six test holes were drilled at the locations shown on the Test Hole location plan (Figure 2). Test Holes 09-01, 09-02, 09-03 and 09-04 were drilled in the general vicinity of the proposed drain field. Test Holes 09-05 and 09-06 were drilled between the proposed water well and the drain field locations. The test holes were drilled using a 50mm diameter hand auger to depths ranging from 1.4 to 3 m. The test hole depths were limited by drilling conditions such as wet sand or very stiff clay. Representative soil samples were collected and returned to AECOM's Soils Testing Laboratory for further testing.

Standpipe piezometers were installed in Test holes 09-01, 09-02 and 09-04. Water levels were measured in the piezometers and falling head tests were subsequently performed to provide data that can be used to estimate the hydraulic conductivity of the soils. A draft copy of the test hole logs is attached, including the details of the piezometer installations. The logs will be finalized once the soils testing work is completed.

In general, a thin layer of organics (0.15 to 0.35m thick) was encountered at surface and was typically wet. The organics was underlain by clay in all test holes. A layer of sand ranging in thickness from 1.3 to 1.6m was encountered below the clay in Test Holes 09-01, 09-02, 09-04, a thin layer of sand

(0.2m thick) was encountered in Test Hole 09-05. The water levels measured in the piezometers approximately 12 hours after installation were 2.9m, 1.7m and 1.96m for Test Holes 09-01, 09-02 and 09-04, respectively. As such, static water levels closest to the proposed field site, indicated groundwater flow would be towards the north. The design will be progressed further once the falling head test data is reduced and the soils testing results are available.

In summary, it appears that the site may be suitable for the use of a disposal field, possibly with areas of local excavation of the clay layer, and site grading to ensure minimum separation between the base of the system and groundwater table.

Further geotechnical investigation is proposed to take place over summer 2009, to assist in the detailed design of both the wastewater disposal field and the start up camp facilities. This investigation will comprise the use of a drill rig and will include additional percolation tests.

6) Hydraulic Loading

A consumption figure of 320 LPCD has been assumed, based on information collected from Wuskwatim camp between 2008 and 2009. Therefore, the total flow anticipated is 55,000 litres per day (a conservative estimate), which includes both domestic use and backwash from the water treatment plant (estimated at 15%), plus contingency allowance.

7) Organic Loading

Whilst organic loading is not considered in the design criteria, the maximum organic loading is anticipated to be approximately 9.5 kg BOD per day (based on 75g BOD per person per day). It should be noted that wastewater discharge from the kitchen would first pass through a grease trap.

8) Concept Design

The concept for wastewater disposal comprises the use of two prefabricated septic tanks (with sedimentation and control chambers, and an access manhole). Each would be fitted with small submersible pumps (on a duty/standby arrangement) and a forcemain discharging into a disposal field. Sludge would be removed from the septic tank at periodic intervals via vacuum truck, and transported to a licensed facility for disposal. This concept has also been used previously at other Manitoba Hydro facilities, including Radisson and Henday converter stations.

The Regulations refer to 3 types of system, namely;

- 1. Trench type disposal field (using wastewater effluent chambers)
- 2. Trench type disposal field (using perforated distribution pipe)
- 3. Total area field (using either pipe/aggregate or chamber system, either on grade or aboveground)

The choice of system will be refined as further site information becomes available. However, for the purposes of the concept design, a "Type 1" system, comprising "Infiltrator" units with Quick-4 High Capacity Chambers, has been assumed. It is understood from the manufacturer that there are a number of other installations in Manitoba, and similar work camps in Alberta. The use of a chamber style trench disposal field allows for higher flows than with a perforated distribution pipe and aggregate filled trench due to larger surface area and storage capacity.

The multiple trench field would comprise two header pipes, each connected to a series of perforated plastic chambers located in parallel shallow trenches, with a minimum of 2m separation (as shown in Figure 3).

Wastewater shall be discharged into the chambers via small diameter pressure pipe. The pipe may be either suspended via straps or supported on stools within the chamber. An application rate of approximately 11.7 litres/m²/day has been assumed, which is anticipated to be conservative, based on the geotechnical information gathered to date.

As currently proposed, a distance of approximately 300m separation would be maintained between the discharge field and the groundwater well. This separation shall be further reviewed prior to the commencement of well drilling.

Pipe materials, diameters, orifice sizes and spacing will be confirmed during detailed design. The use of pump controls will also be reviewed during detailed design, to allow alternate dosing of the fields.

Fencing shall be installed around the field to prevent vehicular traffic loading. A method for the control of surface drainage will be considered during detailed design, and may include perimeter ditching to avoid additional hydraulic load being added to the drainage field.

9) Protection from Freezing

Depth of cover, vegetation planting requirements and methods for snow capture will be further reviewed during detailed design. However, it is anticipated that there will always be warm effluent being pumped into the field, which should provide sufficient heat to avoid freezing.

10) Proposed Operation, Maintenance and Monitoring

Features such as inspection ports (to confirm the field is not saturated) and cleanout ports shall be included during the detailed design stage, along with an outline program for O&M and monitoring.

In the event of a system failure, it is anticipated that a trucked system would be initiated, whilst repairs are carried out. The septic tanks will be sized appropriately to accommodate hauling of waste water off site in the case of an emergency.

11) Decommissioning

Upon decommissioning of the wastewater system, it is anticipated that the pipes would be plugged and surface features removed from the site.

Respectfully submitted,

J. D. Ellis, P.Eng Community Infrastructure AECOM Canada Ltd.

Encs:

- 1. Test hole logs
- 2. Calculations
- 3. Figure 1 Location Plan
- 4. Figure 2 Borehole Location Plan
- 5. Figure 3 Proposed Drain Field Layout

PROJ	JECT:	Kee	yask Generating Station	Infrastructure	С	LIEN	IT: N	lanit	oba	Hydr	0					TES	THOLE NO: TH-09-0)1
			<u> </u>	E - 343543, N - 625513						5						PRC	JECT NO.: 0217-20	0-07
	TRAC						IOD:					er					VATION (m): 98.88	
	PLE T		GRAB	SHELBY TUBE	_		IT SPC	ON		В				_		COVE		
BACK	FILL	ΓYPE	BENTONITE	GRAVEL]slo	UGH			G	ROU	T			CUTTII	NGS	SAND	
DEPTH (m)	SOIL SYMBOL		SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 : 16 1		RATIO Becke namic C indard ws/300 40 6 tal Unit (kN/m ³ 8 1) MC 40 6	r ¥ Cone Pen Te Dmm) 50 8 t Wt ∎ 3) 9 2 Liqu	> est) ♦ 30 100 0 21	Z	NED SHI + Torva X QL Lab V Pocket Field V (kP 0 10	ane + J X ′ane □ Pen. △ ∕ane � a)		COMMENTS	ELEVATION
0			ORGANICS - peat moss, ro	otmat, wet												200		-
-			CLAY - some silt, trace sand - brown, moist, soft, hi	gh plasticity		G1				· · · · · · · · · · · · · · · · · · ·								
-			CLAY and SAND - some silt plasticity, fine to medium gra	, brown, moist, stiff, high ained sand														-
- - 1	00000		SAND - some silt, trace clay - light brown, moist, de	·					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							- 98 — -
-	000000000000000000000000000000000000000		- clayey below 1.2 m			G2			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							-
-	000000000000000000000000000000000000000		- some clay below 1.5 m						· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·						-
2	000000000000000000000000000000000000000		- trace clay, moist to wet, co	mpact below 1.8 m		G3												97 — - - -
is.GPJ UMA WINN.GDT 24/			CLAY - some silt, trace sand - moist, stiff, high plast			G4					· · · · · · · · · · · · · · · · · · ·							₹ - - - 96 -
LOG OF TEST HOLE DRAFT 0217-200-07 - TEST HOLE LOGS.GPJ UMA WINN.GDT 2477/09			END OF TEST HOLE AT 3. Notes: 1) Trace seepage observed ground surface. 2) Sloughing observed in SA 3) Water level at 2.4 m below after drilling. 4) Installed 25 mm standpipe of below ground surface.	in SAND at 1.8 m below ND. w ground surface immediately e.														- - - - - - - - - - - - - - - - - - -
OF TI		シ	AECOM									ed Ba Gil Rol	idwin Dinson				ETION DEPTH: 3.05 m ETION DATE: 21/7/09	
POG														binsor				1 of 1

			yask Generating Statior		CL	IEN	IT: N	1anit	oba I	Hydro)				TES	THOLE NO: TH-09-	02
			· · · · · · · · · · · · · · · · · · ·	, E - 343493, N - 625503	4					-						JECT NO.: 0217-20	00-07
	TRAC						OD:					er				VATION (m): 99.03	
	PLE T		GRAB				T SPC	DON							RECOVER		
BAC	KFILL		BENTONITE	GRAVEL	<u></u>	SLOU	JGH			G					TTINGS	SAND	
DEPTH (m)	SOIL SYMBOL		SOIL DES	SCRIPTION		SAMPLE #	SPT (N)	◆ SI 0	 ◇ Dyr PT (Sta (Blo 20 4 20 4 7 1 Plastic 	Becker amic C ndard I ws/300 0 6 al Unit (kN/m ³ 8 19	× Cone Pen Te mm) 0 8 Wt 0 20 Liqui	est) ♦ 0 100 0 21	ا ۵	+ Torvane X QU X □ Lab Vane Pocket Pe Field Van (kPa)	⊃ □ n. Δ	COMMENTS	ELEVATION
0			ORGANICS - peat moss, ro	otmat, wet											130 200		99 -
- - - - - - -			CLAY - silty, trace sand, tra - grey, moist, firm, hig - brown below 0.5 m CLAY and SAND - silty - light brown, moist, st sand	ce organics h plasticity liff, high plasticity, fine grained		G6											
1 - - -			plasticity	rm to stiff, intermediate to high		G7											98 - - -
- - - -2 -			grained sand SAND - some clay, some si	wet, compact to dense, fine		G8											- - - - - - - - - - - - - - - - - - -
JGS.GPJ UMA WINN.GDT 24/7/09			- trace clay below 2.4 m			G9 G10							••••••				
LOG OF TEST HOLE DRAFT 0217-200-07 - TEST HOLE LOGS.GPJ UMA WINN.GDT 24/7/09			after drilling. 4) Installed 25 mm standpip	in SILT and SAND at 1.5 m AND. w ground surface immediately													
LOG OF T		シ	AECOM					RE	VIEW	ED B	Y: G	iil Rol	ldwin binson Gil Ro	binson		ETION DEPTH: 3.05 n ETION DATE: 21/7/09 Page	

CLAY - silly some sand tiple boow. Now in the SY tiple boom. Now in the SY tiple boom	PROJ	ECT:	Keeyask Generating Station Infrastructure	С	LIEN	IT: M	lani	toba	n Hy	/dro)					TES	THOLE NO: TH-09-0)3
SAMPLE TYPE GRAB SHELBY TUBE SPILT SPOON BULK NO RECOVERY CORE Image: Solid DESCRIPTION Image: Solid DESCRIPTION <td></td> <td>0-07</td>																		0-07
Image: Solution of the second seco								mm				er			710			
0 ORGANICS - peat moss, rootmat, wet - CLAY - silty, some sand - light brown, frozen to 0.9 m - some ice inclusions (<2 mm dia.) between 0.6 and 0.9 m.		SYMBOL		TYPE	#		♦ 5 0	◆ D SPT (S (B 20 17 Plastic	ETRA Wynam Stand Stand Blows 40 Total (kN 18	TION ecker nic C ard F /300 /300 Unit V/m ³) 19 VC	N TES cone < Pen T mm) 0 3 Wt ∎) 2 2 Liqu	> est) ♦ 80 10 1 1 20 2 iid	0	AINED + T > □ La Δ Poi	SHEAR orvane - (QU X ab Vane cket Pen eld Vane (kPa)	STRENGTI + □ a. Δ • €	COMMENTS	DEPTH
 - light brown, frozen to 0.9 m - some ice inclusions (<2 mm dia.) between 0.6 and 0.9 m. - moist, firm, intermediate to high plasticity below 0.9 m - brown, high plasticity below 1.2 m G12 G13 G14 G15 G15 G16 G16 G17 G18 G19 G11 G12 G12 G13 G14 G15 G15 G14 G15 G14 G15 G14 G15 G14 G15 G15 G14 G14 G15 G14 G14 G14 G15 G14 G14 G14 G15 G14 G14	0		ORGANICS - peat moss, rootmat, wet					20	40							150 200		
G12 - brown, high plasticity below 1.2 m G12 - trace silt inclusions (<5 mm dia.), stiff below 2.1 m G13 G13	-		- light brown, frozen to 0.9 m		G11													
G12 - trace silt inclusions (<5 mm dia.), stiff below 2.1 m	- 1 -		- moist, firm, intermediate to high plasticity below 0.9 m															1-
G13 G13	- -		- brown, high plasticity below 1.2 m															
	- - - - -2 -		- trace silt inclusions (<5 mm dia.), stiff below 2.1 m															2-
State END OF TEST HOLE AT 3.0 m IN CLAY Notes: 1) Seepage observed from ORGANICS. 2) No sloughing observed. 3) Water level at 2.1 m below ground surface immediately after drilling from seepage in ORGANICS. 4) Backfilled test hole with auger cuttings. 4 AECOM	GPJ UMA WINN.GDT 24/7/09				G14													
AECOM LOGGED BY: Jared Baldwin COMPLETION DEPTH: 3.05 m REVIEWED BY: Gil Robinson COMPLETION DATE: 21/7/09	11 HOLE DRAFT 0217-200-07 - TEST HOLE LOGS. トー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		Notes: 1) Seepage observed from ORGANICS. 2) No sloughing observed. 3) Water level at 2.1 m below ground surface immediately after drilling from seepage in ORGANICS.															3-
COMPLETION DATE: 21///09	F TE		AFCOM	1														
\[0 90		AECOM													COMPL		1 of 1

			yask Generating Station I rt-Up Camp, UTM 15 V, I			LIEN	IT: N	lanito	ba F	Hydro)						HOLE NO: 1 ECT NO.: 0		
	[RAC			2 310000, 10 020000	1	FТH	OD:	50 m	חm H	and	Αιια	<u>-</u> r					ATION (m):		0-0
	PLE T		GRAB	SHELBY TUBE			T SPC			BI		JI		\square		COVERY			
	FILL			GRAVEL		SLO					ROUT	Г			CUTTIN		SAN		
DEPTH (m)	SOIL SYMBOL		SOIL DESC		SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	PENETF	RATION Becker amic C ndard F ws/300 0 6 al Unit (kN/m ³)	N TEST ★ Cone ◇ Pen Te mm) 0 8 Wt ■) 2 20 Liquia	S st) ♦ 0 100		+ Ton X C Lab ∆ Pocke € Field (kl	IEAR STI vane + U × Vane □ vt Pen. Δ Vane ⊕ Pa) Ω0 15		COMMEN	TS	
0			ORGANICS - peat moss, root	imat, wet															
			CLAY - silty, trace to some sa - brown, frozen to 1.1 m	ind i															
			- trace ice inclusions (<1 mm	dia.) between 0.6 and 1.1 m		G15													
1		· • • •	- moist, firm, high plasticity be	slow 1.1 m															
			- stiff below 1.4 m SAND - silty, some clay	ret, compact to dense, fine		G16													
2	000000000000000000000000000000000000000		grained	er, compact to dense, nine		G17						· · · · · ·							
	000000000000000000000000000000000000000		- clayey below 2.4 m																
3	00000000000000000000000000000000000000		- some clay below 2.7 m END OF TEST HOLE AT 3.0	m IN SAND		G18													
			 Notes: 1) Seepage observed from OI 2) Sloughing observed in SAN 3) Water level at 0.2 m below after drilling from seepage in 14 4) Installed 25 mm standpipe. 5) Water level in standpipe or below ground surface. 	RGANICS. ND. ground surface immediately ORGANICS.				 											
4			RAFT								0		duric					2.05	
		シ	AECOM									d Bal il Roh	awin oinson				ION DEPTH: ION DATE: 2		—
		-	ALCOM											obinso			IUN DATE. 2	Page	1

		Keeyask Generating Station Infrastructure		LIEN	IT: N	lanit	oba I	Hydr	0					TES	Thole No: Th-09-0)5
		I: Start-Up Camp, UTM 15 V, E - 343701, N - 625493	-												JECT NO.: 0217-200	0-07
CONT				<u>1ЕТН</u> 1ср. –	<u>OD:</u> T SPC	<u>50 n</u>		land B		er				ECOVE	VATION (m):	
DEPTH (m)		SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	(N) TAS	♦ SF 0 : 16 1	PENET ★ Dyn T (Sta (Blo 20 4 ■ Tot 7 1: Plastic	RATIO Becke amic (ndard ws/30(ws/30(0 6 tal Unit (kN/m ³ 8 1 MC	N TES r ₩ Cone < Pen Tr Omm) 50 { t Wt ■) 9 2 Liqu	> est) ♦ 30 100 I 20 21		INED SH + Tor ∠ C □ Lab △ Pocke ● Field (ki	HEAR S vane + tU X Vane [et Pen. Vane (Pa)	STRENGTI - - - - - - - - - - - - - - - - - - -	COMMENTS	DEPTH
0	<u>}</u> }}	ORGANICS - peat moss, rootmat, wet					20 4	10 e	50 8 :	30 100		<u>i0 1</u>	00	150 200		
-		CLAY - silty, trace sand, trace rootlets - brown, moist, firm to stiff, high plasticity														
-		- brown, moist, ninn to sun, nigh plasticity							:	: 			: : :			
									: 				: :	÷		
-				G19												
-																
-1		- sandy, soft, intermediate plasticity below 0.9 m											,			1-
-				G20					 							
-		- trace sand, very stiff, high plasticity							:	 			:	:		
													: 			
-	00	SAND - some silt, trace clay, dry to moist, dense to very dense, fine grained		G21									: : :			
-		CLAY - silty, trace sand, brown, dry to moist, very stiff, high														
		\plasticity END OF TEST HOLE AT 1.7 m IN CLAY														
-		Notes: 1. Hand auger refusal at 1.7 m below ground surface.					·····		 				•••••			
-2		 No seepage or sloughing observed. Backfilled test hole with auger cuttings. 										; 				2 -
-												; ;	: :			
4/7/09																
5DT 2																
VINN.C													• • • • • • • • • • • • • • • • • • •			
UMA /																
S.GPJ									:			: : :	: : :			
00 01 01 01									: 			: : :	: : : :	÷		3 -
PLE PLE									; ;			; ;	: : ;			
TEST																
- 20-00																
1 1																
AFT (: : :	: :		: : :	:	 		
LE DR		NET.											: 	 :		
OH LS		RAFT							<u></u>			· · · · · · ·				
LOG OF TEST HOLE DRAFT 0217-200-07 - TEST HOLE LOGS.GPJ UMA WINN.GDT 24/7/09		AECOM	_	_	_					ed Ba Sil Ro	ldwin binson	1			ETION DEPTH: 1.68 m ETION DATE: 22/7/09	
FOG		ALCOM										obinso				1 of 1

		Keeyask Generating Station			LIEN	IT: N	lanit	oba I	Hydr	0					TES	THOLE NO: TH-09-	06
		I: Start-Up Camp, UTM 15 V	, E - 343616, N - 625494													DJECT NO.: 0217-20	00-07
CONT SAMP			SHELBY TUBE		<u>1ЕТН</u> 1сп. і	IOD: IT SPC	<u>50 n</u>		land B		er				ECOVE	VATION (m): RY	
DEPTH (m)	SOIL SYMBOL	SOIL DESC		SAMPLE TYPE		SPT (N)	♦ SF 0 2 16 1	PENET ★ Dyr PT (Sta (Blo 0 4 ■ Tor 7 1 Plastic	RATIO Becke namic (undard ws/300 tal Uni (kN/m 8 1 MC	N TES r ₩ Cone < Pen Tr Omm) 50 { t Wt ■ 3) 9 2 Liqu	> est) ♦ 30 100 I 20 21		IINED SF + Torv X Q □ Lab ' △ Pocke ● Field (kF	HEAR S vane + QU X Vane [et Pen. Vane (Pa)	STRENGTI - - - - -	COMMENTS	DEPTH
0		ORGANICS - peat moss, rootmat,	wet					20 4	40 - 6	50 8	30 100		50 10	00	150 200		
- - -		CLAY - silty, trace sand, trace root - brown, moist, firm to stiff, h	lets igh plasticity							· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		
- - -		- some sand, soft below 0.9 m												· · · · · · · · · · · · · · · · · · ·			
1 - -		- trace sand, very stiff, high plastici	ty					· · · · · · · · · · · · · · · · · · ·		· · · · · · ·	· · · · · ·		· · · · · · · · · ·	· · · · · · · · · ·			1-
-		END OF TEST HOLE AT 1.4 m IN Notes:															
- - - 2		 Hand auger refusal at 1.4 m bell No seepage or sloughing observ Backfilled test hole with auger cr 	ved.														2 -
														· · · · · · · · · · · · · · · · · · ·			
										· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
—3 —								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·		3 -
														· · · · · · · · · · · · · · · · · · ·			
4		RAFT								les	od D-		· · · · · ·				
5		AECOM										ldwin binsor	1			ETION DEPTH: 1.52 m ETION DATE: 22/7/09	1
		THE COM											obinso				1 of 1

99 Commerce Drive Winnipeg, MB R3P OY7 Canada

Ref	Notes:																			Ou	tput	
		тлрі				ITC					D	AGES								_		
		IAD				13					P/	AGE	>									
		г	[oC li	htroc	luctio	on F	Design	Cor	nstra	aints	A	1										
		•				JII, L	Jeolgi					•										
		0	Desigr		nstra	ints					A	1										
												-										
		Ν	Jultip	le Tr	ench	Svs	stem (/	Aqqr	egat	:e)	A	2										
									Ŭ													
		Ν	Nultip	le Tr	ench	Sys	stem (O	Chan	nber)	A	3										
		Т	Total A	Area	Field	l (Ag	grega	te)			A	L										
		Т	Total A	Area	Field	l (C h	ambe	r)			A	5										
		S	Summ	ary							A	5	-							1		
				_				-	-			_								_		
												_		<u> </u>								
																				-		
													_							-		
								-				_								-		
	Intr	oduc	tion										_							-		
		ouuc						-				-										
		Thes	e calc	ulatio	ons a	re re	quired	to de	eterr	nine t	he re	nuire	d size	e of	a dra	ain f	ield f	or				
							Station					10110		0 01	u un							
				1					p-													
		The o	drain f	ield	will d	ispos	se of b	oth g	arey	and s	septic	wate	er froi	m th	ne sta	art-u	ip ca	mp				
							ank, p															
	Des	sign C	Consti	aint	s																	
	Car	np po	pluatio	on								12	5									
																				_		
	Per	capit	a wate	er coi	nsum	ptior	1					320)		LCF	U.				-		
	Тан			001 4								EE01				0)/					$\left \right $	
	100		y efflu ounts f			200kg	wash)					5500	0		L/D	ay				-		
1	<u>۸</u>					Jack	was(1)	+				11 7	7 /		1 /~~	²/Da			_		$\left - \right $	
1	App		on rate		loret		e" for si	zina	<u> </u>			11.7	4		L/m	102	ıy			_	$\left \right $	
		(SelC		av	10151	case		zing,	/			_							_		$\left \right $	
								+				+	+						_	1		
	Ref	erenc	es.																	-	$\left \right $	
				mont	Act	(=12	5 - D 1	M 83	3/200)3) T	able (Wast	tewat	ter F	fflue	ent A	pplic	cation		1		
	1	-	-nviror	nem	ACI																	
	1					•	e and 1			,												

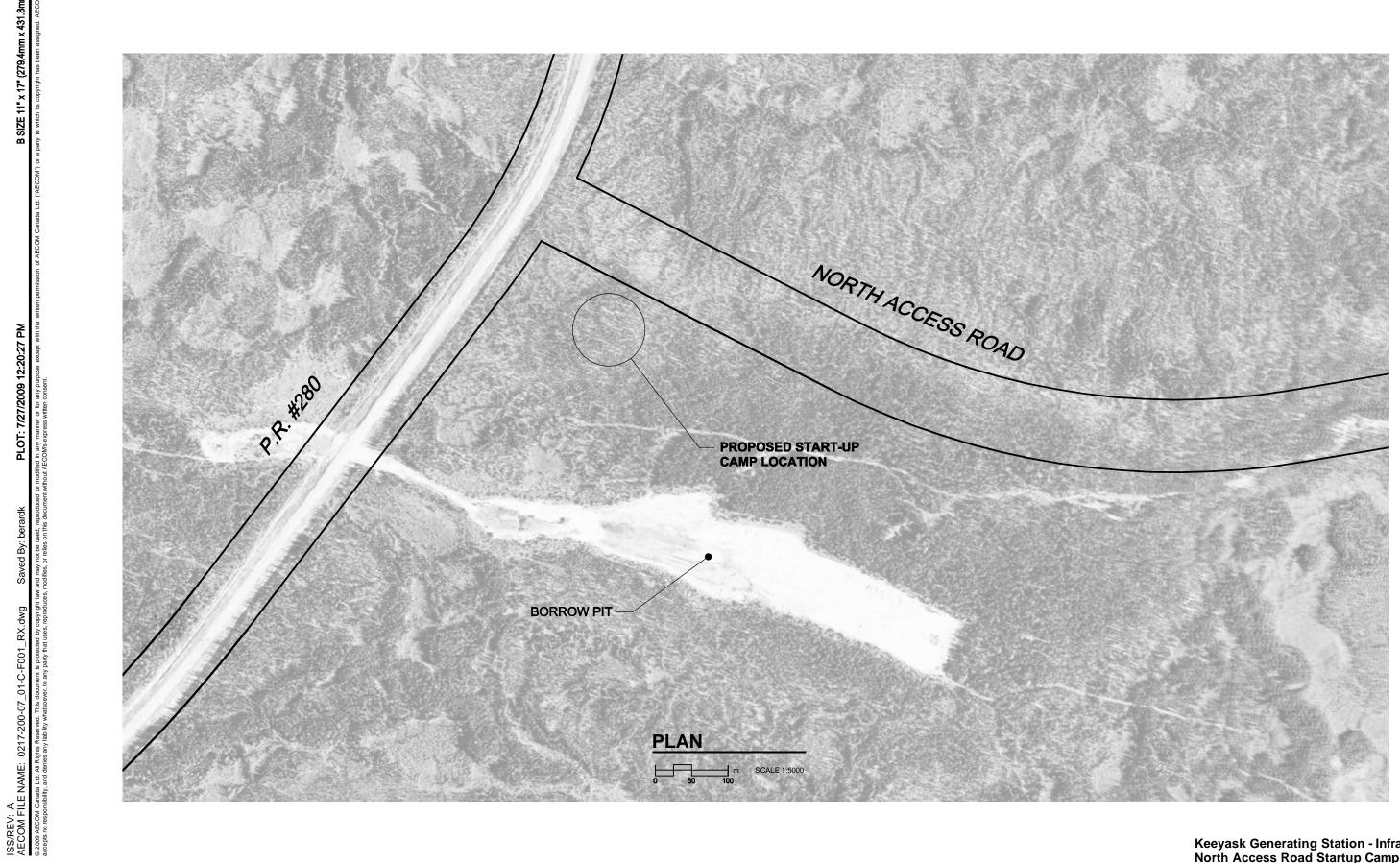
99 Commerce Drive Winnipeg, MB R3P OY7 Canada

Ref	Notes:			Output
	Trench System using a Traditional Pipe and Aggreg	ate		
		4.05		
	Camp population	125		
	Water consumption	320	LPCD	
	Percent of water discharged through system	100%		
	Daily Volume (Q)	55000	L	
1	Application Rate	11.74	L/m²/Day	
	(Based on assumption of clay soil in area)			
	Trench Geometry			
2	Trench width (W)	1.00	m	
	(Maximum allowed width)			
3	Trench Depth	1.00	m	
	(Maximum allowed depth)			
4	Height of distribution pipe above trench bottom (H)	0.6	m	
	(1m deep trench - (0.3 m earth cover + 0.1 m stone	cover))		
5	Area of trench per linear meter (A)	1.300	m ² /Linear m	
	DailyEfflu	entFlow		
	$Length of Trench = \frac{Datty Dynt}{(Application Rate) \times (Complexity Dynt)}$	(ApplicationArea)		
	Length of trench required	3603.72	m	
	Field Geometry			
-				
6	Length of laterals	18	m	
	(Maximum length of laterals)			
	# of laterals required	201		
_				
7	Spacing Spacing	2	m	
	(Minimum distance between trenches)			
	Total width of field (assume one large area)	601.00	m	
			2	
	Total field area	10818.00	m ²	
	References:			
	1 Environment Act (E125 - R.M. 83/2003), Table	(Wastewater Efflue	nt Application	
	Rates for Trench-type and Total Area Disposal	•		
	2 Environment Act (E125 - R.M. 83/2003), Sched	,		
	3 Environment Act (E125 - R.M. 83/2003), Sched			
	4 Environment Act (E125 - R.M. 83/2003), Sched			
		$z_{100} = \pi, 0 = 0 = 0 = 2(4)$		
	5 Environment Act (E125 - R.M. 83/2003), Sched	ule A, Section 2(4)		
		ule A, Section 2(4) ule A, Section 2(4)		

99 Commerce Drive Winnipeg, MB R3P OY7 Canada

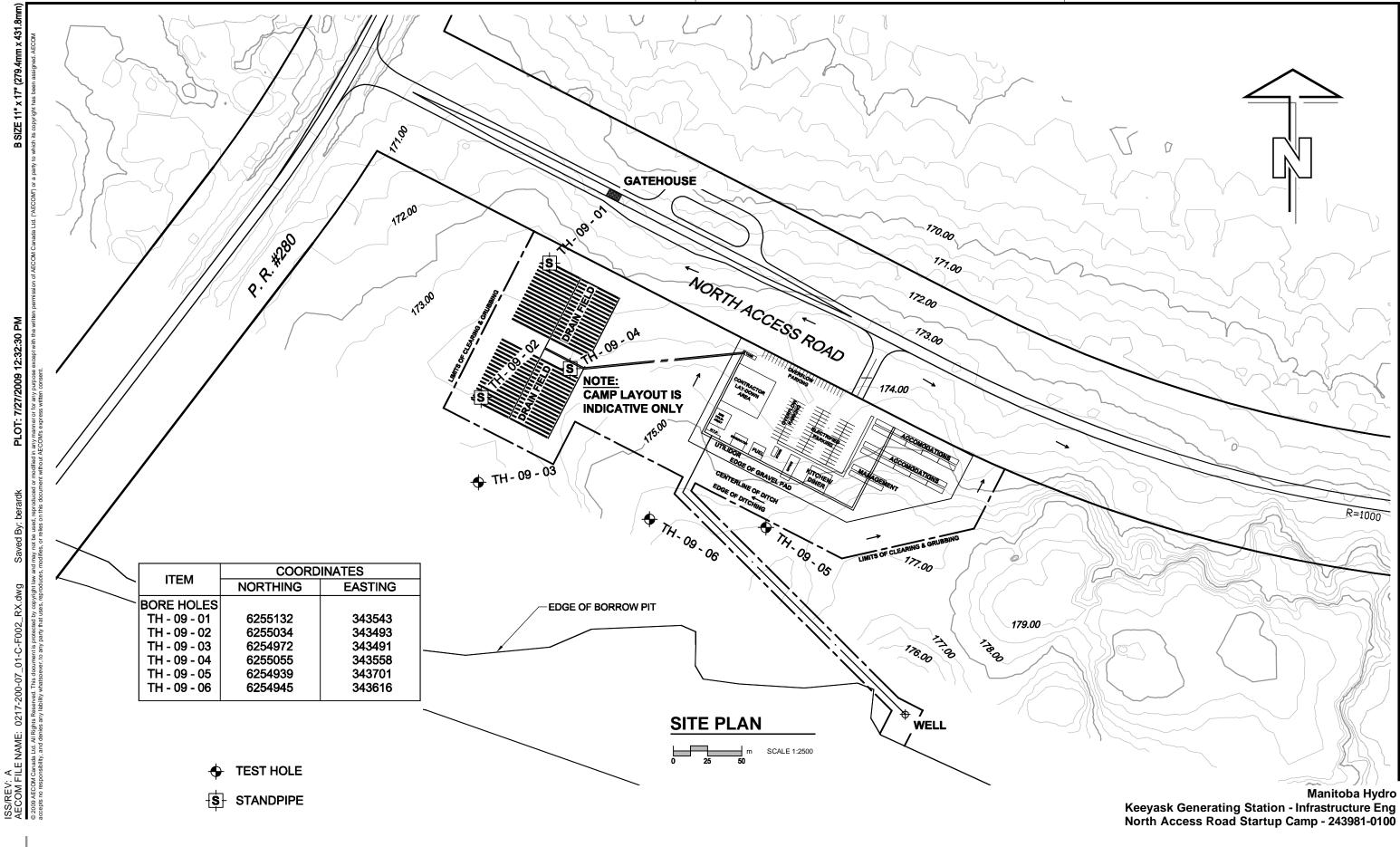
Ref	Not	tes:																			Out	put	
	_	Trench	Sys	tem	usi	ng a	a Ch	amt	oer I	Desi	gn												
	_	Camp p														125							
	_	Water of						41								320		LP	CD				
	_	Percent	t of w	vate	r ais	cnar	gea	thre	bugn	sys	tem					100%	D						
	-	Daily Vo	alum	~ (0))											55000		1	-				
	_	Daily V		6 (G												33000	,						
1		Applica	tion	Pate	\											11.74	1	l /n	n²/Da	<u>av</u>			
-	_		sed			mnti	on o	of cla	av sc	il in	area	a)				11.7-	r	L/11		ay			
		(Du				npu						•)											
2	_	Open A	rea l	Mult	ipliei	ŕ										1.5							
_	_	Trench																					
3		Trench	widt	h (W	/)											0.86		m					
		(Wi	idth c	of In	filtra	tor S	Syste	ems	Qui	ck4	High	Cap	bacit	y Cł	nambe	rs)							
4		Area of	tren	ch p	er lii	near	me	ter (A)							1.463	3	m²,	/Line	ear m			
										k4 H	ligh	Capa	acity	Cha	amber	S)							
											Л		2.00										
	L	engthof	Tren	ch =	=							-			Flow					_			
		0			(A	lppl	icat	ionl	Rate	e)×((App	olica	itior	ıAre	$ea) \times ($	Open#	Areal	Aultip	olier)			
		Length	of tre	ench	req	uire	d									2134.8	31	m					
	_																						
		Field G	eom	etry	/																		
-	_	Longeth		hanal	-											20							
5		Length	aximu			h of	lata	rolo								30		m					
	-	# of late			_		late	iais,								72			-				
	_	# UI late	1 1 1 5	iequ	unec	1										12							
6	_	Spacing	r													2		m					
			a nimu	m d	istar	nce ł	hetw	leen	trer	Iche	s)												
		Total w														204.2	1	m					
									larg														
		Total fie	eld a	rea												6126.2	24	m ²					
						-																	
																			1				
		Referer	ices:																				
		1	Env	iron	men	t Ac	t (E	125	- R.	M. 8	3/20	03),	Tab	ole (\	Naste	water I	Efflue	nt App	olicat	tion			
															elds)					[
		2														Section							
		3														Manit							
		4		-												Manit		Page 9	9				
		5														Section							
		6	Env	iron	men	t Ac	t (E	125	- R.	M. 8	3/20	03),	Sch	edu	le A, S	Section	2(3)						

99 Commerce Drive Winnipeg, MB R3P OY7 Canada

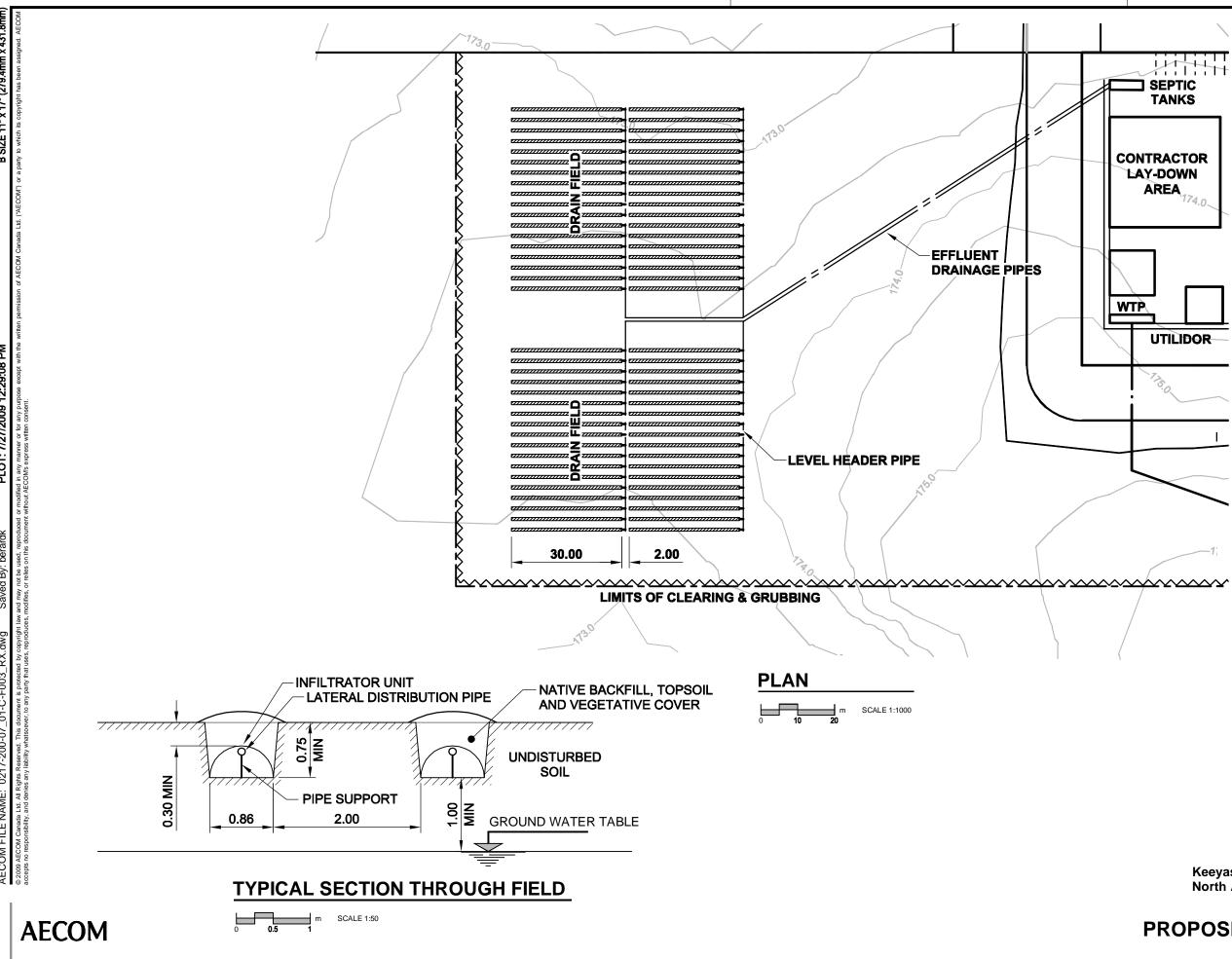

ef	Notes:			Output
	Total Area Field Using Pipe and Aggregate			
	Camp population	125		
	Water consumption	320	LPCD	
	Percent of water discharged through system	100%		
	Daily Volume (Q)	55000	L	
1	Application Rate	11.74	L/m²/Day	
	(Based on assumption of clay soil in area)			
2	Safety Factor	2		
	(Safety factor for pipe and aggregate systems)			
	$Area of Field = \frac{(Daily Effluent Flow) \times (Say)}{Area light fluent Flow)}$	tetyFactor)		
	ApplicationRate	e 🗐		
	Area of field required	9369.68	m ²	
	Field Geometry			
	Assumed width of field	30	m	
	Length of field	312.32	m	
_				
_				
_				
_				
	References:			
	1 Environment Act (E125 - R.M. 83/2003), Table	e (Wastewater Efflue	ent Application	
_	Rates for Trench-type and Total Area Disposa			
_	2 Environment Act (E125 - R.M. 83/2003), Sche			

99 Commerce Drive Winnipeg, MB R3P OY7 Canada

ef	Notes:		Output
	Total Area Field Using a Chamber Design		
	Camp population	125	
	Water consumption	320 LPCD	
	Percent of water discharged through system	100%	
	Daily Volume (Q)	55000 L	
1	Application Rate	11.74 L/m ² /Day	
	(Based on assumption of clay soil in area)		
2	Safety Factor	1.5	
-	(Safety factor for chamber systems)		
	$Area of Field = \frac{(Daily Effluent Flow) \times (Safety Factor)}{Applied to the set of the s$	pr)	
	$AreaofField = \frac{1}{2} \int $		
	ApplicationRate		
	Area of field required	7027.26 m ²	
_		027.26	
_			
	Field Geometry		
_			
_	Assumed width of field	30 m	
_			
_	Length of field	234.24 m	
	References:		
	1 Environment Act (E125 - R.M. 83/2003), Table (Wastew	vater Effluent Application	
+	Rates for Trench-type and Total Area Disposal Fields)		
+	2 Environment Act (E125 - R.M. 83/2003), Schedule A, Se	ection 2(6)	


99 Commerce Drive Winnipeg, MB R3P OY7 Canada

Ref	Not	es:																				Out	put	
	1														1								-	
		Sum	nma	ry:																				
				ld area															-					
		Pipe	and	d aggre	gate	tren	ch s	yste	m							10,8	818		m²					
		Cha	mbe	er trenc	h sy	stem										6,1	126		m²					
		Pipe	and	d aggre	gate	e tota	l are	ea fie	eld							9,3	370		m²					
	_																		2					
	_	Cha	mbe	er total	area	field										7,0	027		m²					
	_																							
	_	Ther									1													
	_	Cna	mpe	er tren	cn s	yste	m w		over	the	iea	st ai	nou	nt of	τοτ	al area								
	-					+									+									
	-				+	+									+									-
						+									+									
	1																							
	_																							
	_																							
	_																							
	_				_																			
	-				_										-									
	_														-									
	-				_										+									
	+				-	+			-						+									
	+					+			-						+									
						+									+									
	1														+									
	1														1									
	_				_																			
	_														\square									



Keeyask Generating Station - Infrastructure Eng North Access Road Startup Camp - 243981-0100

LOCATION PLAN Figure 1

TEST HOLE LOCATION PLAN Figure 2

þ ISS/REV: A AECOM FILE NAME: 021 © 2009 AECOM Canada Ltd. All Rights R accepts no responsibility, and denies any 1

PROPOSED DRAIN FIELD LAYOUT Figure 3

Manitoba Hydro Keeyask Generating Station - Infrastructure Eng North Access Road Startup Camp - 243981-0100

Appendix A2

Analysis of Alternatives

ROAD

Alignment of the proposed road involved a scoping process from selection of a preferred corridor based on a regional analysis to selection of a preferred alignment within the preferred corridor.

The regional analysis involved gathering information on the physiography, topography, geology, soils, and broad environmental constraints. Technical feasibility, life-cycle costs, distance to borrow sources and environmental factors were used in the analysis. The Gull Esker provided technical and cost benefits for a corridor and appeared to avoid sensitive areas.

Once a preferred corridor was selected, work began on selecting a preferred alignment within the corridor. There will be a 100-m right-of-way (ROW) for the road and the centreline will vary within the 100-m ROW zone. The selection process generally followed five steps.

The first step in this process involved the establishment of the North Access Road Route Selection Committee in July 2005 (described further in Section 4.1.1. of the main report), comprised of members of Manitoba Hydro and their consultants, along with representatives from the local potentially affected First Nation communities of Fox Lake Cree Nation, Tataskweyak Cree Nation, York Factory First Nation, War Lake Cree Nation and Manitoba Infrastructure and Transportation.

The second step involved the assessment of alternative routes based on a benefit/cost analysis and aerial photograph interpretation. In this analysis, two alternatives were developed along a common roadway alignment while a third alternative was developed along a different roadway alignment. Efforts were made to follow an existing winter trail route which already had received some disturbance.

The third step in the process involved field studies to evaluate the alternative alignments. Manitoba Hydro conducted a field program in the winter of 2007-08 for the purpose of collecting data for use in the detailed design stage of the proposed road. The field program involved analyses of the preferred road options using input from technical specialists (including over-flights and ground-based environmental investigations for potential routes) and consultation with the North Access Road Route Selection Committee. In addition, the Committee members were given the opportunity to fly over the proposed route and if necessary, suggest alternative alignments.

The fourth step in the process involved the development of constraint mapping on aspects such as fisheries, heritage resources potential, bird nesting and/or concentration areas, rare or uncommon habitat, wetlands and organic soils with excessive ice, potential bear dens, caribou calving, enduring physical features, etc., as well as maps of local First Nations' sensitivities such as resource harvesting trails and traplines. The output was used to identify environmental sensitivities within the proposed route alignments and to establish mitigation measures and/or alignment adjustments for protection of identified environmental considerations.

An analysis of the constraint mapping allowed for alignment adjustments to avoid sensitive areas. Integrated with the previous analyses, the process enabled the selection of a preferred alignment based on the following factors:

- Minimizing potential adverse effects to the environment;
- Remaining cost-effective and provide good technical potential for a safe route design; and
- Minimizing construction schedule risks.

A final step in the process was a series of public meetings in local First Nation communities (Bird, Gillam and Ilford) to present the road and gather feedback on the preferred route alignment. This is described in Section 4.1.1 of the main text.

The preferred alignment allows for borrow material for the road to be obtained from within the ROW instead of distant borrow pits. There is an existing borrow pit near the junction of PR 280 and the road, which may be used along with material from the G-3 deposit, but overall, material for the road will be taken from within the 100-m ROW.

START-UP CAMP WASTEWATER TREATMENT

As described in the Concept Design (Appendix A1), a range of alternatives was considered for sanitary wastewater disposal at the start-up camp, including hauling black water or sewage to Split Lake, Gillam or Thompson, a mechanical treatment plant, a holding tank with a drain or septic field, and a sewage lagoon. The alternatives were evaluated from monetary and non-monetary aspects, such as potential for disruption (bad weather, freezing conditions) and training requirements.

The wastewater lagoon at Split Lake is already overloaded. Hauling wastewater to Gillam or Thompson presents risk due to inclement weather, would be costly, and consume a large amount of fuel. A mechanical plant would require trained operators and an adsorption field, as there is no adequate receiving stream nearly the site.

A wastewater lagoon would be feasible but is high in cost. The septic tank/field option was identified as the preferred alternative for reasons of cost, relatively low risk, and reliability. Preliminary information on site conditions indicates that the soil is likely suitable for a disposal field and, accordingly, the septic tank/field option is planned. Further geotechnical investigations are underway to confirm the suitability of the soil conditions. In the event that this information does not confirm the appropriateness of this option, the alternatives of a mechanical plant with an adsorption field or hauling of the wastewater to Gillam will be proposed.

START-UP CAMP

The presence of an existing disturbed area near the beginning of the proposed road corridor provided the basis for selecting the start-up camp location. Conditions that favoured this location included distance from PR 280, raised elevation, presence of treed buffer area, proximity to a potential potable water source, and site drainage away from water source. A location away from PR 280, but close enough to allow ready access to this existing road was a major factor in site selection.

MAIN CAMP (PHASE ONE)

The location of the main camp for the proposed Keeyask GS project was determined relative to the location of the GS facilities, and considered access to the site and suitability of site conditions. Distance from the GS site was considered to be a critical factor in location. Favourable conditions also included relatively level land surface, foundation type, site drainage, avoidance of wetlands, proximity of granular sources, potable water supply and waste disposal opportunities.

STREAM CROSSING

Three main alternatives were considered for the crossing at Looking Back Creek. The alternatives included a multi-plate culvert, a bridge with abutments and a clear-span bridge. The preferred alternative was the clear-span bridge due to the minimal risk of adverse effects on fish and fish habitat, despite the comparatively higher cost. The selected crossing location was determined to be more favourable than upstream and downstream locations where the creek was either wider or not confined to a channel. No alternatives were considered for the crossing at the unnamed tributary, due to the low sensitivity of the site.

BORROW AREAS

Borrow areas, including granular sources, in the Local Study Area were identified from previous investigations by Manitoba Hydro along the Nelson River. From among the sources available, borrow areas for road construction, camp development and other infrastructure were selected based on their distance from the construction activity and characteristics of the borrow materials. From among a group that appeared to be economically feasible to use, environmental input was provided to determine sensitivities. In general it was decided to remain within the defined ROW as much as possible.

POTABLE WATER SUPPLY

Potable water supply alternatives for the start-up camp were to haul in water from Gillam or Thompson and to use local well water. Use of a proposed well in the vicinity of the start-up camp was preferred on the basis of cost, supply sustainability and environmental considerations.

Appendix A3

Contracts and Workforce Requirements

Table A.3-1 presents estimated peak Project workforce requirements by quarter and by occupation for the Project. These estimates could change when the Project is implemented depending on how the contractors choose to perform their work.

Table A.3-1 Estimated Keeyask Early Infrastructure Workforce Requirements by Occupations

Item		2009		20)10			20	011		20	12	Quarterly	Person
	Labour	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Peak	Year
	NON-DESIGNATED TRADES (CONSTRUCTION,	TRANSP	ORTATI	ON AND	INDUST	'RIAL)	•	•	•	•	•			
1	Trade Helpers and Construction Labours	7	7	7	7	10	8	15	21	18	14	12	21	25
2	Driller / Blaster	1	2	2										1
3	Heavy Equipment Operator (excluding Crane Operators)	8	10	21	21	30	20	22	23	10	5	3	23	35
4	Teamster	0	3	10	10	15	12	15	16	5	3	1	16	19
		•	-				-	•		-		-	•	-
	DESIGNATED TRADES (CONSTRUCTION, TRAN	SPORTA	TION AN	ND INDU	JSTRIAL									
5	Crane Operator	0	0					1	1	1	1	1	1	1
6	Mechanic	1	1	1	1	1		1	1	1	1	1	1	2
7	Carpenter	0	0	1	1	1	1	5	6	6	5	4	6	6
8	Painter									2	2	2		1
9	Cement Mason									2		2		1
10	Roofer								2	2	2		2	1
11	Insulator								2	2	2		2	1
12	Iron Worker (excluding Reinforcing Workers)	0	0											0
13	Electrician			1	1	1	1	2	4	4	4	3	4	5
14	Plumber			1	1	1	1	2	3	3	3	3	3	4
15	Pipefitter							2	2	2	2		2	2
	CONSTRUCTION SUPPORT AND SERVICE TRAD	ES												
16	Technical (Surveyors and Drafting)							4	4	4	4	2	4	4
17	Catering and Janitorial	0	2	2	10	10	10	10	10	10	10	10	10	19
18	Security				5	5	5	5	5	5	5	5	5	9
19	First Aid				5	5	5	5	5	5	5	5	5	9
20	Employee Retention Support				2	2	2	2	2	2	2	2	2	4
	1													
	CONTRACTOR SUPERVISORY													
21	Project Superintendent	1	3	2	1	2	2	3	4	2	2	1	4	6
	MANITOBA HYDRO SITE STAFF			r										
22	Manitoba Hydro Site Staff	2	4	8	15	15	15	15	15	15	13	3	15	30
	Infrastructure Project Estimated Workforce	22	33	56	80	98	82	109	126	101	85	60	126	184