April 14, 2009 P10008(16).50.02

Manitoba Hydro Place Hydro Power Planning 360 Portage Avenue Winnipeg, MB R3C 0G8

Attention:

D.S. Magnusson, P.Eng

Section Head

Nelson River Keeyask Station

Hydro Power Planning Department

Dear Mr. Magnusson:

Keeyask Generating Station Stage IV Studies - Axis GR-4

Bedrock Geology

Review of Bedrock Conditions

in the Powerhouse Area

Memorandum GN-1.5.4, Rev 0

Manitoba Hydro File 00195-11610-0017_02

Enclosed please find three copies of Revision 0 of the above noted memorandum as well as two sign-off sheets containing the relevant KGS Acres signatures.

Please add Manitoba Hydro signatures to the sign-off sheets and return one copy for our files.

Yours very truly,

PRP:spa Encl N.5. Smith, P.Eng Project Manager

cc H. Zbigniewicz G.P. Schick

Manitoba Hydro Hydro Power Planning Department Power Projects Development Division

APR 18 2009

Keeyask Generating Station Stage IV Studies - Axis GR-4

Design Memorandum GN-1.5.4 Rev. 0, April 14, 2009

Bedrock Geology Review of Bedrock Conditions in the Powerhouse Area

Manitoba Hydro File 00195-11610-0017_02

Prepared by	RS Acres Ltd.	April 14, 2009
Checked by		April 14, 2009
	20	
Reviewed by	KGS Acres Ltd.	
Approved by	Mff (N.T.Smith) KGS Acres Ltd.	Apr 14,2009
Accepted by	P.S. magnusson P.S. magnusson	apr 77, 2009

KGS Acres Ltd. Winnipeg, Manitoba

Keeyask Generating Station Stage IV Engineering Phase Quality Review Summary Sheet - Design Memorandum

Quality Review Summary Sheet - Design Memorandum										
Memorandum Name:	GN-1.5.4 Bedrock Geology - Review of Bedrock Conditions in the Powerhouse Area									
Version / date:		Rev	v. 0 / April 14, 2	009						
Manitoba Hydro File:		001	95-11610-0017	_ 02						
Author / Company or MH Dept.:			P.R. Pantel/KA							
		Summa	ary of Comments Bre	eakdown						
Review Conducted By	Review Requested	Reviewed	Rejected Request to Review	Review Not Completed	Deferred to Final Design					
Civil Engineering Department										
Dam Safety										
Hydrotechnical Geotechnical										
Structural Civil Site Investigations Electrical Engineering Department Mechanical Engineering Department Engineering Services Dept Eng. Controls & Protection Hydro Power Planning Department Water Resources Engineering Department New Generation Construction Department Major Projects Assessment/Licensing Department Transmission and Civil Design Department System Control Department System Planning Emergency Operations Stantec ECOSTEM Wildlife Resources Northern Lights Heritage InterGroup KGS Acres North South Consultants Inc. Recommendations: This memo did not undergo a formal quality review process of during the Final Design Stage.	during Stage IV Engineering Studies. It is recommended that this memo undergo a quality review									
during the Final Design Claye.										
Date:	August 30, 2011	Summary A	Author:	Stephanie Gilmour						

To I.R. Dewar Date April 14, 2009

File No. P10008(16).50.02

From P.R. Pantel, S.E. Nachtigall cc

Subject Keeyask Generating Station

Stage IV Studies, Axis GR-4

Bedrock Geology

Review of Bedrock Conditions

In the Powerhouse Area

Memorandum GN-1.5.4, Rev 0

Manitoba Hydro File 00195-11610-0017_02

1 Introduction

The site of the proposed Keeyask Generating Station (Keeyask GS) is approximately 730 km north of Winnipeg, at the head of Stephens Lake on the Nelson River. Stephens Lake is the reservoir for the existing Kettle GS, the upstream limit of which is the Keeyask Rapids. The proposed Axis GR-4 for the structures crosses the Nelson River at the rapids. This places the Principal Structures approximately 50 km downstream of Split Lake and 30 km west of Gillam. A site plan is shown in Figure 1.

The latest investigation program: 2003 Summer Stage IV Investigation is described in a Memorandum GN-1.1.19, "Proposed Additional Investigation for GR-4 Axis Alignment" [Ref 1]. This program included eight diamond drill holes in the Powerhouse Area. Investigation of the bedrock in this area was undertaken in 1988, 1991, 1999 and 2003.

This memorandum discusses the preliminary results of the 2003 Powerhouse investigations, and the overall interpretation of the findings of all the investigations undertaken within this area. This review includes the following results:

- general bedrock lithology
- core losses/recovery
- Rock Quality Designation (RQD) and rock mass characteristics
- Water Pressure Testing (WPT)
- dominant joint orientation trends

I.R. Dewar - 2 April 14, 2009

• Rock Mass Rating (RMR) and Geological Strength Index (GSI).

2 Previous Subsurface Investigation Programs

Field and laboratory investigations of the site's overburden and bedrock have been conducted at, and in the vicinity of, the proposed Keeyask GS site during several phases of the Keeyask GS design development. The first investigation was conducted in 1962 and 1963, followed by other programs between 1987 and 1991, 1999 and 2000, and in the summer of 2003. A significant understanding has been developed with respect to the regional and site engineering geology, the foundation conditions for the Principal Structures, and the quality and availability of construction materials. These explorations are summarized in Table 2.1.

Previous exploration work within the Principal Structures areas includes the following.

- (a) Material reconnaissance survey of Nelson River site, conducted in 1962 by Manitoba Hydro [Ref 2].
- (b) Seismic survey conducted in 1962 by Geo-Recon Exploration [Ref 3].
- (c) Geological mapping in 1963 between Birthday Rapids and downstream of Keeyask Rapids [Ref 4].
- (d) Geophysical (Seismic, EM, magnetic) surveys, diamond drilling and geological mapping which were performed in 1988 at both the Keeyask Rapids and Birthday Rapids sites [Ref 5 to 7]. Horizontal and vertical controls surveys were conducted at Birthday Rapids, Keeyask Rapids and Conawapa in the summer of 1988 [Ref 8].
- (e) Seismic surveys, EM surveys and a limited program of auger drilling were conducted on the proposed dyke lines during 1990 [Ref 9 and 10]. Field terrain mapping was also performed along the proposed dyke lines in 1990 [Ref 11].
- (f) Sonic drilling, hollow stem augering, diamond drilling and test pitting were conducted along the proposed dyke lines during the 1990/91 winter [Ref 12].
- (g) Sonic drilling, diamond drilling and test pitting were conducted at the Principal Structures area, along alternative dyke alignments, and at potential borrow areas, during the 1991 summer investigation program. Detailed joint mapping and core orientation and review of the regional/site geology were completed during this program [Ref 13].
- (h) Diamond drilling, hollow and solid stem augering were conducted along the Axis of the Principal Structures for Axis GR-4 during the 2003 summer investigation program [Ref 14]. Geological mapping was also conducted in the Keeyask Rapids area.
- (i) In the summer 2003, the Manitoba Geological Survey, in collaboration with the Universities of Alberta and Waterloo, started a 3-year integrated bedrock mapping and structural data program [Ref 15 and 16].

I.R. Dewar - 3 April 14, 2009

3 Geology

The Keeyask GS site is located within the Canadian Shield physiographic region, at the northeastern margin of the Superior Province in Manitoba. The Precambrian bedrock within the area consists of granite, amphibolite, greywacke gneiss and diabase. The greywacke gneiss contains bands or sills of granitic material throughout. Diabase occurs as continuous and discontinuous dikes, which have intruded the greywacke gneiss, amphibolite and granite rocks. The contacts between the diabase dikes and the host rock are typically open at ground surface, but tighten with depth.

Figure 2 illustrates the local bedrock conditions within the vicinity of Axis GR-4. The purpose of this figure is two fold:

- to update local Keeyask GS geology with the latest bedrock mapping field work [Ref 15 and 16]
- to simplify bedrock geology nomenclature that will enable individuals to correlate with previous geology logs and reports.

The bedrock within the Keeyask GS area is typically fresh, strong to very strong with moderately spaced jointing. Most of the joints appear tight with little or no alteration. Open joints are typically widely to very widely spaced, slightly to faintly altered and may be infilled with clay. Carbonate and chlorite coatings were frequently observed on joint surfaces.

During the 1988, 1991, 2003 and 2004 geological mapping programs, fracture/shear zones were observed within the bedrock outcrops to the south and west of the Powerhouse Area [Ref 13, 15, 16]. These zones are generally less than 0.5 m in width, inactive, and are typically healed or recrystallized and strong.

3.1 Geology of the Powerhouse Area

The Powerhouse Area consists of mafic volcanic and metasedimentary rocks (Archean Supracrustal rocks) with granitoid injections (Archean Felsic Intrusive rocks). In addition, mafic and ultramafic dykes (Paleoproterozoic rocks), have intruded into the mafic volcanic rocks and granitoid injections. A geological description of the rock types encountered in the Powerhouse Area is provided below.

Mafic Volcanic Rocks

Amphibolite interpreted as metabasalt, massive to laminated, composed of hornblende, plagioclase, epidote, chorite; interlayered with and intruded by medium to coarse grained

I.R. Dewar - 4 April 14, 2009

amphibolite (interpreted as metagabbro). The mafic volcanic rocks contain granitoid injections and mobilizate. The mafic volcanic rocks are identified in the drill hole logs as amphibolite.

Metasedimentary Rocks

Metagrewacke, interlayered pelite and psammite, medium to dark grey, Fe-rich, composed of quartz, biotite, feldspar, garnet, amphibole, staurolite, and cordierite. The metasedimentary rocks are locally arkosic with calcilicate layers and contain up to 80% granitoid injections. Metasedimentary rocks are identified in the drill hole logs as greywacke gneiss.

Granitoid Injections and Pegmatite

Granitoid injections and pegmatite form intrusive veins and bodies in the mafic volcanic rocks. Granitic injection veins, sheets and bodies including leucocratic and locally contains up to 5 cm aggregates of biotite, garnet, amphibole and pyroxene, retrogressed to mainly chlorite (chlorite clotted texture). Granitoid injections are identified in the drill hole logs as granite.

Granodiorite and Derived Gneissic Rocks

Granodiorite augen gneiss injections, locally up to 25% biotite and amphibole. Observed in the granitoid injections. Granodiorite augen gneiss is identified in the drill hole logs as granite.

Mafic and Ultramafic Dykes

Diabase dykes, alphenitic to fine grained, occur up to a few metres wide. Gabbro dykes, medium to coarse grained, massive to weakly foliated, composed of amphibole, plagioclase and pyroxene, occur up to 50 m wide. Diabase and Gabbro are both identified in the drill hole logs as diabase.

Fault zones were not observed in the Powerhouse Area. However, a shear zone was identified in the south end of the Powerhouse Area. The shear zone is well healed, and strong.

Both the regional and site specific bedrock geology are discussed in detail in the 2003 summer investigation report [Ref 14].

4 Investigation Drilling Results for the Powerhouse Area

A total of nineteen drill holes were advanced in the Powerhouse Area. Fourteen of the nineteen drill holes were inclined holes, set at either a 45°, 60° or 70° angle to horizontal, to intercept bedrock joints in the Powerhouse Area. Thirteen holes were advanced down into the bedrock to about el 100 m, which is approximately 12 m below the lowest point of the proposed foundation of the Powerhouse structure. Some drill holes were drilled from a platform over shallow water in the north channel of the Nelson River.

I.R. Dewar - 5 April 14, 2009

Figures 3, 4 and 5 show the location of explorations and sections within the Powerhouse Area. A summary of the drilling data for those holes that have been used for the analyses contain herein is provided in Table 4.1. Individual drill hole summaries are contained in Appendix A. The information contains both NQ and HQ size drill holes. The size of the hole and use of either single or triple barrel rods will affect the quality of the sample obtained, with HQ and triple barrels typically producing samples with fewer machine-caused fractures.

4.1 Overburden

In the riverbed of the North Channel, the overburden consists of layers of sands and gravels, and till with occasional cobbles and boulders. The thickness of the overburden ranges from zero to 5.6 m.

4.2 Bedrock Lithology

The exploratory drill holes drilled within the Powerhouse Area encountered greywacke gneiss, amphibolite and granite. Diabase was also encountered in some of the holes drilled within the Powerhouse Approach Channel.

The greywacke gneiss is typically described as being dark grey, medium to coarse grained, moderately strong to strong, with distinct to indistinct planar to irregular foliation.

The amphibolite is typically described as being dark grey to black, very fine grained, strong, with distinct foliation.

The granite is typically described as being light grey/green to light pink/green, medium to coarse grained, strong, with no distinct foliation.

The diabase is typically described as being dark green, very fine grained, strong, with no foliation evident.

4.3 Drill Core Recovery

The percent recovery is defined as the ratio of the total length of the pieces of rock core retrieved from the drill run, to the total length of the drill run. The percent recovery for each of the drill holes analyzed on a run by run basis, are presented in the individual drill hole summary log in Appendix A.

In the Powerhouse Area, the percent recovery averaged 99% for all investigations. A core recovery percentage of less than 100% indicates a core loss, reflecting rock core that has been ground by the drilling process or contains open features (e.g., joints, fractures, etc). In addition, core that is left down the hole at the end of the drilling is classified as a core loss.

I.R. Dewar - 6 April 14, 2009

The zones where core loss occurred are summarized in Table 4.2. Individual core loss zones within the nineteen drill holes in the Powerhouse Area range between 10 mm to 260 mm (averaging 59 mm), excluding any core left the down hole at the end of the last drill run.

Core losses are typically less than 70 mm in any one individual zone and generally occur in narrow broken core zones associated with drill action and closely spaced joints. Many joint surfaces within these zones are noted to have chlorite, kaolinite and limonite staining/coatings.

The largest broken and lost core zone occurs at a depth of 7.84 m to 8.20 m (360 mm length) in drill hole G-0016. The core loss within this zone is estimated to be 260 mm (72% of the zone). The zone is associated with drill action on closely spaced joints in faintly altered rock.

For the final run of each drill hole, the rock core piece that was left down the hole was recorded as a core loss. Rock core left down the hole was recorded in 14 drill holes (73% of the holes), with lengths varying between 10 and 280 mm (averaging 105 mm).

4.4 Rock Quality

The rock quality for the bedrock recovered in a diamond drill hole is typically expressed in terms of RQD (Rock Quality Designation). It is generally reported on a run-by-run basis, and is computed using the following equation:

$$RQD = \frac{\sum length \ of \ core \ pieces > 10 \ cm \ length}{total \ length \ of \ core \ run} \times 100\%$$

The length of the core pieces, as utilized in the formula, are based on natural breaks only. Care was taken to ensure that the fractures that were caused by handling or drilling process were identified, and ignored when determining the RQD values.

The following list provides a typical relationship between the RQD and the anticipated engineering quality of the rock [Ref 17].

RQD (%)	Rock Quality
<25	Very Poor
25 - 50	Poor
50 – 75	Fair
75 – 90	Good
90 – 100	Excellent

The RQDs for each of the drill holes, analyzed on a run-by-run basis, are presented in the drill hole summary in Appendix A. In addition, the RQD values were plotted versus elevation, as shown in Figure 6.

I.R. Dewar - 7 April 14, 2009

The rock mass in the Powerhouse Area can be characterized as strong to very strong, with RQD values ranging from 37% to 100%, and averaging 90%. Generally the RQD values increase with depth. Below el 120 m, the RQDs for the subsequent runs are generally above 75%, indicating good to excellent rock quality.

There were four drill runs where the recorded RQD values were less than 10%. These occurred when the drill bit became blocked at the start of the run, due to closely spaced joints. The core recovered from the blocked bit was generally less than 10 mm in length, with two or more joints.

Out of 504 drill runs in the Powerhouse Area, 329 (65%) show that the bedrock is of excellent quality (RQD>90%). In addition, 124 (25%) show that the rock is of good quality, and 38 (8%) show that the rock is of fair quality. In summary, 453 (90%) of the drill runs show that the bedrock in the Powerhouse Area ranges between good to excellent quality.

The joint spacing is generally described as moderately spaced, averaging approximately 300 mm.

4.5 Water Pressure Tests

Water Pressure Testing (WPT) to determine the rock's permeability was undertaken, with the results being presented in terms of Lugeon values. This method of interpretation is widely used in grouting and dam design.

The Lugeon value, which reduces water pressure data to a common base, is defined as the volume of water (in litres) pumped into a zone of drill hole per metre of test length, per minute, at an excess pressure of 1000 kPa. Since the tests are carried out at various pressures and over varying lengths of hole, the data is proportionally reduced back to the common values of 1-m length and 1000-kPa pressure.

WPT conducted at Keeyask GS were modified from Houlsby's [Ref 19] five step test to three steps, to reduce the time spent on the individual tests. Since the bedrock is relatively tight, it was felt that little information would be lost due to the elimination of the first and last steps. The modified procedure employed was as follows.

- 1) First 5 minutes run at low pressure (approximately 50% maximum pressure).
- 2) Second 5 minutes run at peak pressure (approximately 75% maximum pressure).
- 3) Third 5 minutes run at a low pressure (approximately 50% maximum pressure).

Flow characteristic and Lugeon interpretation were determined using the flow chart [Ref 19] shown in Figure 7.

I.R. Dewar - 8 April 14, 2009

The analysis of the WPT results assumed that Lugeons (Lu) less than 0.1 (Lu = 0) indicate No Take, and results between 0.1 and 1.49 are reported as 1 Lu. All other Lugeon values are rounded to the nearest number (i.e., 1.5 to 2.4 = 2 Lu). WPT results greater than 100 Lu were assigned a value of 101 Lu, as values in this upper range represent relatively high bedrock permeability.

The permeability of the bedrock is based on the interpreted Lugeon value and described as follows [Ref 13].

Bedrock Permeability Lugeon Value

 $\begin{array}{ll} \text{High} & > 100 \\ \text{Medium} & 5-100 \\ \text{Low} & 1-5 \\ \text{Practically Impermeable} & 0 \end{array}$

4.5.1 Water Pressure Test Results

The Lugeon values determined and their associated flow characteristics, for all of the WPT conducted in the Powerhouse Area, are listed in Table 4.3. The following is a summary of the test results for the WPT conducted during the 1988, 1999 and 2003 investigation programs.

1988 and 1991 Investigations

Nine drill holes (BH G-0007, G-0008, G-0011 to G-0016 inclusive, and G-0204) totaling 376.10 m of bedrock drilling were advanced in the Powerhouse Area. A total of 66 WPT tests were conducted (in seven drill holes) on 148.0 m of bedrock (including the overlap of the test zones). The test stage lengths ranged between 2.0 to 3.0 m.

The results range from 0 (tight) to 74 Lu. Out of the 66 WPT tests conducted, 49 (74%) tests indicate that the rock is practically impermeable (0 Lu). In addition, 5 (8%) tests indicate that the rock has a low permeability (Lugeon value 1 to 5) and 11 (17%) of the tests indicate a medium permeability. In summary, 55 (83%) of the 66 tests conducted show that the bedrock permeability ranges from low to practically impermeable.

In general, the rock grades from relatively tight at depth to more permeable near the bedrock surface. However, one test in drill hole G-0008 (top of test zone 23.7 m) was conducted with the maximum pump capacity (i.e., >100 litres per minute). The significant features of this zone are three open joints and one partly open joint. Typically higher water takes, resulting in Lugeon values greater than 10, are associated with broken and/or core loss zones, or partly open joint features recorded on the Geological Detail Fracture Logs.

I.R. Dewar - 9 April 14, 2009

2003 Summer Investigation

Thirteen drill holes (BH 03-008 to 03-016 inclusive, and 03-022) totaling 299.86 m of bedrock drilling were advanced during the 2003 summer exploration program in the Powerhouse Area, along the currently planned axis for the Principal Structures. A total of 60 WPT were conducted on 319.69 m of bedrock (including the overlap of the test zones). The test stage length ranges from 3.2 to 8.9 m, averaging 5.3 m.

The results range from 0 (tight) to 18 Lu. Out of the 60 WPT conducted, 10 (17%) tests indicate that the rock is practically impermeable (0 Lu). In addition, 43 (72%) tests indicate that the rock has a low permeability (Lugeon value 1 to 5) and 7 (12%) of the tests indicate a medium permeability. In summary, 53 (88%) of the 60 tests conducted show that the bedrock permeability ranges from low to practically impermeable.

In general, the rock grades from relatively tight at depth to more permeable near the bedrock surface. Typically higher water takes, resulting in Lugeon values greater than 10, are associated with broken and/or core loss zones, or partly open joint features recorded on the Geological Detail Fracture Logs.

Combined Investigations

A total of 22 drill holes totaling 675.96 m of bedrock drilling were advanced in the Axis GR-4 Powerhouse Area. A total of 126 WPT were conducted in these 22 drill holes, within 467.69 m of bedrock (including the overlap of the test zones). The stage length ranges between 2.0 m and 8.9 m, averaging 3.7 m.

The range of the WPT results is shown in Figure 8. Out of the 126 WPT conducted, 59 (47%) tests show that the rock is practically impermeable (0 Lu). In addition, 48 (38%) tests show that the rock has a low permeability (Lugeon value 1 to 5) and 18 (14%) of the tests indicate a medium permeability. In summary, 107 (85%) of the 126 tests conducted show that the bedrock permeability ranges from low to practically impermeable. Figures 9 and 10 display the Lugeon values determined for all of WPT conducted in the Powerhouse Area with depth and elevation, respectively.

A breakdown of the interpreted flow characteristics for all WPT conducted in the Powerhouse Area is as shown in Table 4.4.

4.6 Evaluation of Jointing Trends

Typically the joints within the bedrock in the Powerhouse Area are moderately spaced, tight, with little or no alteration. Those open joints which are present are typically widely to very widely spaced, slight to faintly altered and may be infilled with clay. Carbonate, chlorite and limonite coatings were frequently observed on joint surfaces.

I.R. Dewar - 10 April 14, 2009

In the Powerhouse Area, four major and two minor joints sets were identified from a total of 708 oriented core measurements, not including discontinuities described as healed. Jointing trends within the Powerhouse Area are summarized in Table 4.5 and are based on those holes listed in Table 4.1.

A polar density plot derived from oriented core measurements taken from boreholes drilled in the Powerhouse Area is presented in Appendix B, Figure B1. In addition, stereonet projections of the dominant Joint Sets J1 through J6 are presented in Figure B2.

The following describes the open joints, slickensides, and clay coated joints based on the analysis from the oriented core measurements.

Open Joints

A total of 143 joints within the Powerhouse Area are identified as open, partly open or ground. Generally the open joints are subhorizontal and not confined to a particular joint set.

Slickensides

A total of 31 joints were noted to be slickensided. Based on the information available, it appears that movement which produced these slickensides is not confined to a particular joint set.

Clay Coated Joints

A total of 32 joints were noted as having clay or kaolinite coatings. Based on the information available, it appears that the clay coatings are not confined to a particular joint set.

As Table 4.2 indicates, a number of broken rock excavation, core zones, lost core zones, and broken and lost core zones have been recorded in the geological and detailed fracture logs; therefore, the joint orientations could not be measured due to the conditions of these zones.

5 General Rock Mass Classification

5.1 Geological Strength Index

Hoek's Geological Strength Index (GSI) was used to establish the properties of the rock mass as an aid in determining the preliminary rock support guidelines [Ref 20]. Hoek's GSI is now commonly accepted for general rock mass classification, particularly for surface slopes and foundations. The GSI can be used to compute the rock mass strength parameters; cohesion and friction angle, as well as the modulus of deformation. The GSI consists of Bieniawski's 1976 Rock Mass Rating (RMR) computation without groundwater and joint orientation

I.R. Dewar - 11 April 14, 2009

adjustments. These adjustments are not necessary because the actual groundwater conditions and joint orientations can be directly accounted for in the stability analyses.

Bieniawski's RMR system incorporates geological, geometry and engineering parameters in determining a quantitative value of rock mass quality, which can then be used in rock support design. The following six parameters are used to classify a rock mass using Bieniawski's RMR system:

- 1) Uniaxial Compressive Strength of the rock material
- 2) Rock Quality designation (RQD)
- 3) Spacing of discontinuities
- 4) Condition of discontinuities
- 5) Groundwater conditions
- 6) Orientation of discontinuities.

The RMR system provides rating for each of the six parameters listed above, and is shown in Figure 11. Each of the parameters is assigned a numeric value, which is dependant on the site specific properties present, and then summed to provide a total RMR value for the rock mass.

The GSI can be computed from Bieniaski's 1989 RMR classification [Ref 17] with the following provisions.

- 1) The first four parameters of the 1989 RMR are assessed as usual taking into account the site specific properties.
- 2) The rock mass is assumed to be completely dry, and the groundwater rating is assigned a value of 15.
- 3) The joint orientations are assumed to be "very favorable" and the "adjust for joint orientation" rating is assigned a value of zero.
- 4) The resulting RMR classification can be used to compute the GSI using the equation GSI = $RMR_{89} 5$.

Within the Powerhouse Area at Keeyask GS, the majority of the joint sets will dip away from the excavations. For a thorough discussion of possible instabilities due to toppling, planar sliding, and/or wedge failures and treatment considerations, the reader is referred to Memorandum GN-4.2.2.8, Rock Support and Temporary Drainage [Ref 22].

Bieniaski's 1989 RMR value and the GSI for the Powerhouse Area are outlined in Table 5.1.

I.R. Dewar - 12 April 14, 2009

5.2 Analysis of Rock Strength

The values for cohesion and friction angle within the rock mass can be computed using the RocScience software entitled RocLab, which includes an alternative way to measure GSI using generalized rock classification tables.

Table 5.2 summarizes the typical properties of the rock types encountered in the Powerhouse Area.

Rock slope stability will be controlled by the joint orientations and characteristics, as they relate to the configuration of the different excavated wall faces. A kinematic assessment of potential failure along the dominant joint sets was conducted for each wall within the Powerhouse Structure and associated channels. A detailed discussion of the analysis is provided in a separate memorandum entitled "Rock Support and Temporary Drainage", Memorandum GN 4.2.2.8.

5.3 Further Considerations

Geotechnical engineering requires the exploration and analysis of a wide variety of earth and rock materials. These materials must be considered for adequacy as foundations and for use in earth and rockfill structures. Since overburden and bedrock are created by natural processes, unlike other engineering materials such as steel and concrete, they seldom exhibit uniform properties. There is risk in every project that unexpected conditions will be encountered. The inability of subsurface exploration programs to detect in advance all potential significant properties and conditions in the rock mass requires designers to make assumptions and generalizations that may be at variance with the field conditions encountered during rock excavation. Therefore, it will be prudent to review the rock support requirement as construction progresses.

Due to the complexity of the geology at the Keeyask GS, significant changes in discontinuity spacing or characteristics within the same rock type, or with a change in rock type, may necessitate the division of the rock mass into a number of smaller structural regions.

For the excavation of the Powerhouse Structure area and its associated channels, good blasting techniques using pre-split blasting should result in a clean face. The pre split face will also be more stable than a normally blasted excavation, and will consequently result in a lower cost for rock support.

I.R. Dewar - 13 April 14, 2009

6 Conclusions

The bedrock lithology encountered in the Powerhouse Area drill holes consist of greywacke gneiss, amphibolite, granitic intrusions and diabase dykes, which is consistent with the regional bedrock geologic interpretation.

Core losses during drilling were generally less than 70 mm at any single location within the drill holes and were associated with drill action and/or closely spaced joints.

The rock quality of the bedrock is considered to be good to excellent as indicated by an average RQD value of 90%. Local zones of low RQDs are associated with narrow zones of closely spaced jointing.

The average Lugeon value determined by the WPT is generally below 3, indicating that the bedrock has a low permeability. Local zones of medium permeability, generally with Lugeon values less than 20 Lu, are associated with open or partly open joints. The testing suggests tighter bedrock conditions exist at depth.

Four major and two minor joint sets have been identified in the Powerhouse Area.

RMR and GSI values were determined to assist with rock classification, and were used to establish rock strength parameters for use in rock support design. The bedrock encountered in the Powerhouse area is classified as fair to good quality rock.

Prepared By

P.R. Pantel

Attach
References
Tables 1 to 5.2
Photographs
Appendix A, B & C
Figures 1 to 11

PRP:spa

I.R. Dewar - 14 April 14, 2009

References

 Acres Manitoba Limited, Memorandum GN-1.1.19, "Gull Generating Station, Stage IV Investigation Program, Proposed Additional Investigation for GR-4 Axis Alignment", Manitoba Hydro File 00195-11600-0238.

- 2. Manitoba Hydro, August 1962, "Report on Reconnaissance Survey for Construction Materials and Permafrost Conditions".
- 3. Geo-Recon Exploration Ltd., February 1962, "Supplementary Report No. 1 on Nelson River Development, Appendix 1B".
- 4. G. E. Crippen and Associates, March 1964, "Report on Nelson River Development, Appendix E".
- 5. Geo-Physi-Con Co. Ltd., December 1988, "Geophysical Exploration Program 1988, Gull and Birthday Rapid Sites, Northern Manitoba", Report No. C88-36.
- 6. Manitoba Hydro, Report on "1988 Subsurface Investigations", under preparation.
- 7. Manitoba Hydro, June 1989, "Manitoba Hydro, Gull and Birthday Generating Stations, Report on 1988 Geological Mapping", Report No. GE177-45
- 8. Manitoba Hydro, November 1989, "Nelson River Investigations, 1988 Horizontal and Vertical Control Surveys at Birthday Rapids, Gull Rapids and Conawapa Generating Station".
- 9. Geophysics G.P.R. International Inc., June 1991, "Seismic Refraction Survey 1990, Gull Rapids Exploration Program".
- 10. Geo-Physi-Con Co. Ltd., January 1991, "Electromagnetic Surveys, Gull Rapids Site, Nelson River, Manitoba", Report No. C90-29A.
- 11. Sikora, E. J., Kennedy, L. A., "Gull Generating Station, 1990 and 1991 Summer Exploration Programs, Field Terrain Mapping", CAW File 10008.19.04 dated March 4, 1992.
- 12. Manitoba Hydro, June 1993, "Nelson River Studies, 1990 Summer and 1990/91 Winter Subsurface Investigation Report, Gull Rapids", Report No. GPD 93-4.
- 13. Manitoba Hydro, June 1995, "Nelson River Studies, Gull Generating Station, 1991 Summer Subsurface Investigation Program", Report No. PSPD 95-3.
- 14. Manitoba Hydro, "Nelson River Studies, Gull Generating Station, 2003 Summer Subsurface Investigation Program", under preparation.

I.R. Dewar - 15 April 14, 2009

15. Manitoba Geological Survey, "Report of Activities 2003", Manitoba Industry, Economic Development and Mines Manitoba Geological Survey, 2003, 92-104.

- 16. Manitoba Geological Survey, "Report of Activities 2004", Manitoba Industry, Economic Development and Mines Manitoba Geological Survey, 2004, 171-186.
- 17. Bieniawski, Z.T., "Engineering Rock Mass Classifications", John Wiley and Sons, Inc. 1989.
- 18. Houlsby, A.C., "Construction and Design of Cement Grouting", John Wiley and Sons, Inc., 1990.
- 19. Houlsby, A.C., "Routine Interpretation of the Lugeon Water-Test", Quarterly Journal of Engineering Geology, Vol 9, 1976, 303-313.
- 20. Hoek, E., Practical Rock Engineering, www.rocscience.com, 2006.
- 21. Acres Manitoba Limited, Memorandum GN-4.1.3, "Gull Generating Station, Stage IV Studies, Axis GR-4, Geotechnical Design Criteria", Manitoba Hydro File 00195-06310-0002.
- 22. Acres Manitoba Limited, Memorandum GN-4.2.2.8, "Keeyask Generating Station, Stage IV Studies, Axis GR-4, Rock Support and Temporary Drainage", Manitoba Hydro File 00195-13200.

Tables

Table 2.1 Keeyask GS – Stage IV Studies, Axis GR-4 Summary of Explorations

Summary of 1				mary of Su	bsurfac	e Explorati	on Programs a	at the Keevas	k Sit	tes	
						•	<u> </u>	Principal			
		Borrow	1			ke Lines	1	Structures			
D (Auger		Test	Auger	Sonic	Test	Diamond	Diamond		Od	D 6E 1 4
Date	Holes	Holes	Pits	Holes	Holes	Pits	Holes	Holes		Other	Purpose of Explorations
1962 – 1963	-	-	-	-	-	-	-	-		Air photo study Borrow reconnaissance survey Reconnaissance seismic survey River bank mapping	Initial reconnaissance level investigations along the Nelson River.
Aug 1987	2 (hand auger)	-	49 (shovel)	-	-	3 (shovel) 3 ⁽¹⁾	-	-	(a)	Shoreline mapping	Reconnaissance level construction material investigations in the Keeyask and Birthday areas.
June-Sept 1988	-	1	<u>-</u>	-	-	-	2	19 (BQ) 25* (BQ)		Geophysical surveys - refraction seismic - electromagnetic (EM 31/34, VLF-EM) - magnetic Bedrock mapping Overburden mapping (shoreline)	Investigation of foundation conditions in the area of the Principal Structures for the Keeyask sites (GR-1, GR-3, GR-4 and GR-5) and the Birthday sites (BR-2, BR-6 and BR-3A/5A).
July-Sept 1990	-	-	-	16 (minute man)	-	-	-	-	(b)	Geophysical surveys - refraction seismic - marine seismic - electromagnetic (EM 31/34) Terrain mapping (dyke) Air photo study	Initial investigations of the foundation conditions along the dyke lines.
Jan-April 1991	-	19	71 (backhoe)	68 (hollow stem)	41	189 (backhoe)	4 (NQ-bedrock only)	-		-	Investigate overburden conditions along the proposed dyke lines.

Table 2.1 Summary of Explorations Continued

			Sumi	nary of Su	ıbsurface	e Explorati	on Programs	at the Keeyas	sk Sites	
				_	Pri					
	Borrow Area			Dyke Lines				Structures		
Date	Auger Holes		Test Pits	Auger	Sonic Holes	Test Pits	Diamond Holes	Diamond Holes	Other	Purpose of Explorations
May-Sept 1991	-	-	296 (shovel and hand auger)	Holes -	-	-	- Holes	98 (NQ, HQ)	(a) Geophysical surveys - refraction seismic - marine seismic - electromagnetic (VLF-EM, HL-EM) - magnetic	Investigate foundation conditions in the Axes GR-3, GR-4 and GR-5 Principal Structures area, and along dyke lines located on the islands.
									(b) Bedrock mapping (c) Terrain mapping (dyke)	
Jan-Apr 1992	-	158	337 (backhoe)	-	-	-	-	-		Impervious and granular borrow material investigations.
Sept-Oct 1999	-	-	-	-	-	-	-	11		Investigate foundation conditions in the North Abutment of GR-3.
Jan-Apr 2000	328	-	299 (backhoe)	68	-	7	-	-		Impervious and granular borrow material investigation. Investigated foundation conditions along dyke lines, at a proposed Fuse Plug dyke, and a creek diversion channel.
July-Sept 2003	-	-	1 (shovel)	7	-	-	7	49 (NQ)	- Bathymetry	Investigate foundation conditions along the GR-4 axis, Principal Structures Area and along the new alignments of the North and South Dykes.
2003 – 2004	-	-	-	-	-	-	-	-	- Bedrock mapping - Structural data	Investigate the Keeyask Rapids area to better define the geology.

Note: (1) Explorations at the Birthday sites

Table 4.1 Keeyask GS - Stage IV Investigation Program, Axis GR-4 Powerhouse Area Drilling Summary

		Location			Orientatio	on (deg)	Depth (m - along core axis)			Approximate Elevation (m)		
Exploratory Hole No.	Year	Northing	Easting	Datum ⁽⁴⁾ (m)	Dip from Horizontal	Azimuth	GWT (5)	B/R	Е.О.Н.	GWT ⁽⁵⁾	B/R	Е.О.Н.
03-008 (1,2)	2003	6247318.18	363885.96	146.68	90	-	5.45	9.53	20.29	141.23	137.15	126.39
03-009 (1,2)	2003	6247197.78	364006.07	147.08	90	-	6.33	8.97	18.99	140.75	138.11	128.09
03-010 ^(1,2)	2003	6247251.96	363885.95	140.88	70	231	0.48	3.79	43.52	140.43	137.32	99.99
03-011 ^(1,2)	2003	6247197.86	363885.09	140.99	70	182	0.34	8.69	43.70	140.67	132.82	99.92
03-012 (1,2)	2003	6247196.75	363925.43	140.98	90	-	0.56	3.22	41.05	140.44	137.78	99.95
03-013 (1,2)	2003	6247157.44	363884.93	141.34	70	63	0.69	4.81	44.01	140.69	136.82	99.99
03-014 (1,2)	2003	6247137.86	363967.90	140.42	70	234	0.94	3.71	43.02	139.54	136.76	99.99
03-015 (1,2)	2003	6247116.58	363886.36	141.18	70	277	0.94	7.66	43.82	140.30	133.98	100.00
03-016 (1,2)	2003	6247097.05	363935.56	140.95	90	-	0.51	4.36	41.01	140.44	136.59	99.94
03-022 (1,2)	2003	6246995.98	363835.99	149.54	90	-	7.73	9.86	25.05	141.81	139.68	124.49
G-0007 (3)	1988	6247037.75	363927.70	140.19	45	13	N/R	3.86	28.94	N/R	137.46	119.73
G-0008 (3)	1991	6247317.44	363885.76	141.50	45	27	1.40	13.11	58.01	140.51	132.23	100.48
G-0011 (3)	1991	6247197.44	363885.65	140.05	45	195	0.00	0.94	55.44	140.05	139.39	100.85
G-0012 (3)	1991	6247197.40	363925.65	139.95	45	264	0.25	1.61	55.80	139.77	138.81	100.49
G-0013 (3)	1991	6247157.44	363885.62	136.91	60	270	-2.55	1.73	51.05	139.46	135.41	92.70
G-0014 (3)	1991	6247137.37	363965.59	140.11	60	206	0.00	4.03	46.10	140.11	136.62	100.19
G-0015 (3)	1991	6247117.44	363885.58	139.81	60	262	0.00	4.32	46.66	139.81	136.07	99.40
G-0016 (3)	1991	6247097.40	363935.56	139.76	60	12	0.00	4.73	42.36	139.76	135.66	103.08
G-0204 (3)	1999	6247194.62	363963.97	141.96	45	20	3.23	4.72	30.79	139.68	138.62	120.19

- (1) Permanent hole number is not available at this time.
- (2) Coordinates presented are based on the Universal Transverse Mercator Projection, Zone 15 North, North American Datum (NAD) 1983.
- (3) Drill hole coordinates were converted from NAD 27 to NAD 83
- (4) Datum varies: ground surface, barge platform or other.
- (5) Depth to GWL based on measured water level in open drill hole at time of drilling Water Level may not represent actual GWLs in either overburden or bedrock.
- (6) Drill Holes 03-010 to 03-016 inclusive, were advanced from a drilling platform. The elevation recorded is either the platform elevation or the top of the collar elevation.
- (7) Elevations reported are based on the Canadian Geodetic Vertical Datum 1928.
- (8) N/R Not Recorded.

Table 4.2 Keeyask GS -Stage IV Investigation Program, Axis GR-4 Powerhouse Area – Summary of Core Losses

TOWCINO			ary of Cor	L LUSSUS					
Drill	Dej (m - alo ax	ng core	Detailed						
Hole	From	To	Fracture	Description					
03-008	9.91	9.92	LCZ	Core is grounded and fresh. Lower contact and upper contact are at 90 degrees to the core axis, subplanar, rough, fragmented across foliation. Core loss estimated to be 10 mm.					
	11.54	11.60	BLCZ	Core loss is probably due to machine break and grinding. Core pieces are approximately 10 to 40 mm and grounded. Upper contact is at 80 degrees to the core axis, subplanar, semi-rough, ground, faintly weathered. Lower contact is at 90 degrees to the core axis, curved, semi-rough, partly ground, and fresh. Core loss estimated to be 10 mm.					
	19.99	20.01	BLCZ	are approximately 10 to 40 mm and grounded. Upper contact is at degrees to the core axis, irregular, semi-rough, ground, and fresh. Lower contact is at 70 degrees to the core axis, irregular, semi-roug partly ground, fresh. Core loss estimated to be 10 mm.					
	20.14	20.29	LCZ	Core loss due to 150 mm left down hole.					
03-009	18.92	18.99	LCZ	Core loss due to 70 mm left down hole.					
03-010	3.79	3.82	BLCZ	Core is grounded and faintly weathered. Lower contact is at 55 degrees to the core axis, subplanar, semi-rough, some limonite coating.					
	5.45	5.53	BLCZ	Core loss is probably due to machine break and grinding. Core pieces are approximately 10 to 40 mm and grounded. Upper contact is at 80 degrees to the core axis, irregular, semi-rough, ground, and fresh. Lower contact is at 70 degrees to the core axis, irregular, semi-rough, partly ground, fresh.					
	7.20	7.27	LCZ	Upper contact is at 50 degrees to the core axis, irregular, semi-rough, faintly weathered, some chlorite. Lower contact is at 75 degrees to the core axis, irregular, semi-rough, moderately weathered, partly ground, some chlorite. Core loss estimated to be 70 mm.					
	8.39	8.44	BLCZ	Broken core pieces are angular to round and between 10 to 30 mm. Upper contact is irregular, rough, fresh, labeled as a machine break. Lower contact is irregular, rough, ground, fresh.					
	9.09	9.25	LCZ	Upper contact is at 90 degrees to the core axis, irregular, rough, faintly weathered and partly ground. Lower contact is at 70 degrees to the core axis, irregular, rough, fresh, micaceous rich. Core loss estimated to be 160 mm.					
	24.47	24.49	LCZ	Upper contact is at 90 degrees to the core axis, irregular, semi-rough, fresh and partly ground. Lower contact is at 80 degrees to the core axis, irregular, semi-rough, faintly weathered and partly ground. Core loss estimated to be 20 mm.					

Table 4.2 Powerhouse Area – Summary of Core Losses Continued

Drill	(m - alo	pth ong core is)	Detailed				
Hole	From	То	Fracture	Description			
	32.82	32.84	LCZ	Upper contact is at 55 degrees to the core axis, subplanar, semi-rough, moderately weathered, trace ground, some epidote. Lower contact is at 80 degrees to the core axis, irregular, semi-rough, moderately weathered, partly ground, some epidote. Core loss estimated to be 20 mm.			
03-011	10.52	10.78	BLCZ	Broken core zone probably a result of drill action on closely space joints. There is evidence of up to 9+ joints. Joints have a dark coating of epidote. The angle of the joints vary between 30 and 90 degrees to the core axis. Recovered pieces vary between 20 to 60 mm. Upper contact is at 65 degrees to the core axis, irregular, sen rough, feature tightness is unknown due to grinding or other condition, moderately weathered, partly ground, some epidote, sor chlorite, and trace ferrous oxide staining. Lower contact is at 75 degrees to the core axis, irregular, smooth, feature tightness is unknown due to grinding or other condition, moderately weathered ground, some epidote, some chlorite. Core loss estimated to be 40 mm.			
	43.69	43.70	LCZ	Core loss due to 10 mm left down hole.			
03-012	5.49	5.58	BLCZ	Broken core zone due to coarse grained foliation in amphibolite. Recovered pieces are ground, 10 to 40 mm in diameter. Upper contact is at 80 degrees to the core axis, ground. Lower contact is at 90 degrees to the core axis, ground. Core loss estimated to be 90 mm.			
	36.36	36.37	LCZ	Upper contact is at 90 degrees to the core axis, irregular, rough, faintly weathered and partly ground. Lower contact is at 80 degrees to the core axis, irregular, rough, fresh and partly ground. Core loss estimated to be 10 mm.			
	41.01	41.05	LCZ	Core loss due to 40 mm left down hole.			
03-013	7.27	7.29	LCZ	Upper contact is at 65 degrees to the core axis, irregular, rough, faintly weathered and ground. Lower contact is at 65 degrees to the core axis, irregular, rough, faintly weathered and ground. Core loss estimated to be 20 mm.			
	12.06	12.08	BLCZ	Recovered 30 mm ground piece. Upper contact is at 90 degrees to the core axis, irregular, semi-rough, faintly weathered, ground, and trace limonite. Lower contact is at 60 degrees to the core axis, irregular, rough, faintly weathered and partly ground, some calcite, trace limonite. Core loss estimated to be 10 mm.			
	12.15	12.18	BLCZ	Recovered 40 mm ground piece. Upper contact is at 85 degrees to the core axis, irregular, rough, fresh and ground. Lower contact is at 90 degrees to the core axis, subplanar, semi-rough, fresh and ground. Core loss estimated to be 10 mm.			
	43.98	44.01	LCZ	Core loss due to 30 mm left down hole.			

Table 4.2 Powerhouse Area – Summary of Core Losses Continued

Drill		pth ong core is)	Detailed					
Hole	From	То	Fracture	Description				
03-014	5.02	5.06	LCZ	Drill inspector reported the drill bit dropped at approximately this depth. Clay coatings on both the upper and lower contacts indicate a probable clay filled open joint. Upper contact is at 65 degrees to the core axis, irregular, semi-rough, feature tightness is unknown due to grinding or other condition, moderately weathered with clay coating. Lower contact is at 60 degrees to the core axis, irregular, semi-rough; feature tightness is unknown due to grinding or other condition, moderately weathered, with a clay coating. Core loss estimated to be 40 mm.				
	24.79	24.81	LCZ	Upper contact is at 60 degrees to the core axis, irregular, rough, faintly weathered, trace pyrrhotite. Lower contact is at 45 degrees the core axis, irregular, rough, partly ground, moderately weathere some calcite, and some pyrite. Core loss estimated to be 20 mm.				
	25.83	25.87	LCZ	Upper contact is at 80 degrees to the core axis, irregular, rough and fresh. Lower contact is at 90 degrees to the core axis, irregular, semirough and ground. Core loss estimated to be 40 mm.				
03-014 cont	27.32	27.34	LCZ	Upper contact is at 80 degrees to the core axis, irregular, rough, partly ground and fresh. Lower contact is at 80 degrees to the core axis, irregular, rough, partly ground and faintly weathered. Core loss estimated to be 20 mm.				
	27.57	27.58	LCZ	Upper contact is parallel to the foliation, at 60 degrees to the core axis, irregular, semi-rough, moderately weathered, some ferric oxide. Lower contact is parallel to the foliation at 60 degrees to the core axis, irregular, semi-rough, moderately weathered, slickensides, and some ferric oxide. Core loss estimated to be 10 mm.				
	27.79	27.88	BLCZ	Recovered pieces are 5 to 40 mm, fresh, partly ground, some have calcite coated surfaces. Upper contact is at 75 degrees to the core axis, subplanar, trace ground, moderately weathered, some calcite. Lower contact is at 90 degrees to the core axis, subplanar, semi-rough, ground and fresh. Core loss estimated to be 50 mm.				
	42.90	43.02	LCZ	Core loss due to 120 mm left down hole.				
03-015	-	-	-	Core loss not encountered.				
03-016	14.15	14.29	BLCZ	Upper and lower contacts are labeled as machine breaks, core loss probably due to grinding. Recovered pieces are 10 to 40 mm, angular and rounded. Upper contact is at 70 degrees to the core axis, irregular, rough, faintly weathered, some chlorite. Lower contact is at 90 degrees to the core axis, subplanar, ground.				
	18.93	18.94	BLCZ	Recovered pieces are 20 mm. Upper contact is at 90 degrees to the core axis, irregular, semi-rough and ground. Lower contact is at 90 degrees to the core axis, irregular, semi-rough and ground. Core loss estimated to be 10 mm.				
03-022	19.42	19.43	LCZ	Upper contact is at 80 degrees to the core axis, irregular, rough, faintly weathered, ground. Lower contact is at 85 degrees to the core axis, irregular, rough, moderately weathered, partly ground, with ferrous oxide stained. Core loss estimated to be 10 mm.				

Table 4.2 Powerhouse Area – Summary of Core Losses Continued

Drill	(m - alo	pth ong core iis)	Detailed					
Hole	From	То	Fracture	Description				
	20.03	20.05	BLCZ	Recovered pieces are 5 to 10 mm. Upper contact is at 80 degrees to the core axis, irregular, rough, faintly weathered and ground. Lower contact is at 90 degrees to the core axis, irregular, rough, faintly weathered and ground. Core loss estimated to be 10 mm.				
G-0007	28.66	28.94	LCZ	Core loss due to 280 mm left down the hole.				
G-0008	17.31	18.48	BLCZ	Closely jointed zone, at least 9 joints present, pieces range in size up to full diameter and 150 mm in length. Pieces are rough, angular, minor grinding, some chlorite coating, trace black coating (greasy feel, soft), minor carbonate. Core loss estimated to be 180 mm.				
	22.79	22.92	BLCZ	Recovered pieces are angular, rough, and fresh. Possibly due to drill action on closely spaced joints. Core loss estimated to be 60 mm.				
	26.30	26.36	BLCZ					
	35.06	35.53	BLCZ	Core is broken into three pieces (approximately 130 mm each) and is badly ground. Core loss estimated to be 70 mm.				
	57.78	58.01	LCZ	Core loss due to 230 mm left down hole.				
G-0011	3.65	4.01	BLCZ	Pieces are angular, strong, some surfaces chlorite coated, some iron staining, some slickensides, at least 4 joints. Core loss may be associated with an open and ground joint at 4.43 m. Core loss estimated to be 60 mm.				
	13.74	13.90	BLCZ	The zone and core loss appears to be due to drill action and grinding. Pieces are angular, strong, some fresh surfaces, some chlorite coating. Lower contact is ground. Core loss estimated to be 150 mm.				
	17.45	17.64	BLCZ	At least 3 joints at 20 to 25 degrees to the core axis, chlorite coated, some carbonate coating. Joints appear open. Core loss estimated to be 40 mm.				
	18.61	18.73	BLCZ	Broken zone is due to drill action, core loss may be associated with numerous ground surfaces throughout the run. Appears only 1 joint present. Pieces are ground, strong, some chlorite coating. Core loss estimated to be 20 mm.				
	55.40	55.44	LCZ	Core loss due to 40 mm left down hole.				
G-0012	4.17	4.27	LCZ	Assumed clay seam, no sample but inspector noted seam 100 to 150 mm, water return brown. Core on either side of assumed seam does not match. Core loss estimated to be 100 mm.				
	4.42	4.60	BLCZ	Possibly due to drill action on closely spaced joints. Pieces are angular, rough, and fresh. Core loss estimated to be 40 mm.				
	36.80	37.26	BLCZ	Pieces are redrilled. Loss most likely due to redrilling of stub left down hole. Core loss estimated to be 90 mm.				
G-0013	50.90	51.05	LCZ	Core loss due to 150 mm left down hole.				
G-0014	46.02	46.10	LCZ	Core loss due to 80 mm left down hole.				

Table 4.2 Powerhouse Area – Summary of Core Losses Continued

Drill	De (m - alo ax	ng core	Detailed						
Hole	From	То	Fracture	Description					
G-0015	4.32	4.89	BLCZ	Core loss may be due to placing of the casing prior to drilling. At least 4 joints present. Pieces are strong, angular, some full diameter, some grinding, some redrilled. Core loss estimated to be 240 mm.					
	6.62	6.73	LCZ	Core loss is assumed to be ground, open, machine break. Core loss estimated to be 110 mm.					
	13.13	13.34	BLCZ	joint at 30 degrees to the core axis. Pieces are full diameter with ground contacts. Assumed the core loss occurs at these ground contacts. Core loss estimated to be 70 mm.					
	46.59	46.66	LCZ	Core loss due to 70 mm left down hole.					
G-0016	7.84	8.20	BLCZ	Zone appears to be due to drill action on a closely jointed and faintly altered zone. Pieces are angular to sub angular, strong, some chlorite coating, some clay, some ground surfaces, some pieces faintly altered. Upper contact is a joint at 35 degrees to the core axis, planar, rough, chlorite coated, some clay, some limonite, and slight slickensides. Lower contact is a joint at 80 degrees to the core axis, planar, rough, some chlorite coating, some clay. Core loss estimated to be 260 mm.					
	9.90	10.03	BLCZ	Pieces are angular, strong, some chlorite coating, some ground, some fresh surfaces. Upper contact is a joint at 30 degrees to the core axis, planar rough, some clay. Lower contact is a machine break at 85 degrees to the core axis, ground. Core loss estimated to be 70 mm.					
	28.56	28.69	BLCZ	Piece of core is redrillled and ground, strong. Assumed core loss due to redrilling and grinding. Core loss estimated to be 40 mm.					
	42.28	42.36	LCZ	Core loss due to 80 mm left down hole.					
G-0204	30.67	30.79	LCZ	Core loss due to 120 mm left down hole.					

(1) LCZ Lost Core Zone(2) BLCZ Broken Lost Core Zone

Table 4.3 Keeyask GS - Stage IV Investigation Program, Axis GR-4 Powerhouse Area – Water Pressure Test Summary

	Test Interval			Lug	geon Va	alue	Ir	nterpreted	
Drill Hole	Depth ⁽¹⁾ from Ground Surface (m)			Stage 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Flow Characteristics ⁽²⁾	Significant Feature ⁽³⁾	
03-008	10.22	-	15.71	0	1	0	1	Laminar	1BCZ, 1BLCZ, 7PO, 8HJT
	15.00	-	20.29	3	4	2	3	Laminar	1BLCZ, 2PO, 10HJT
03-009	10.80	-	15.94	0	1	-	1	N/A	2BCZ, 14PO, 7HJT
	15.24	-	18.99	4	3	3	3	Laminar	1BCZ, 7PO, 7HJT
03-010	5.58	-	10.82	-	0	-	0	N/A	1BLCZ, 2LCZ, 1BCZ, 1O, 2HJT
	10.16	-	15.40	0	0	0	0	No take	-
	14.68	-	19.96	1	1	3	2	Laminar	1PO, 1HJT
	19.27	-	24.52	2	2	3	2	Laminar	1LCZ, 1O, 1PO
	23.83	-	29.09	3	2	2	2	Laminar	1LCZ, 1PO, 2HJT
	28.41	-	33.58	1	1	1	1	Laminar	1LCZ, 3PO, 4HJT
	32.98	-	38.10	1	1	0	1	Laminar	1PO
	37.54	-	43.52	1	1	1	1	Laminar	1O, 1PO, 1HJT
03-011	10.71	-	15.76	0	18	1	1	Dilation	1BLCZ, 5BCZ, 2O, 10PO, 16HJT, 1SHEAR
	15.14	-	20.07	6	6	6	6	Laminar	1O, 13PO
	19.55	-	24.82	3	3	2	3	Laminar	1FOL, 7PO
	23.98	-	29.32	0	0	0	0	No Take	1BCZ, 4PO
	28.63	-	34.05	0	0	0	0	No Take	1BCZ, 4PO
	33.30	-	38.66	0	1	0	0	Laminar	4PO
	37.77	-	43.70	1	1	1	1	Laminar	3BCZ, 1O, 10PO, 1HJT
03-012	5.01	-	11.02	-	16	-	16	N/A	1BLCZ, 2BCZ, 3O, 10PO, 3HJT
	10.33	-	15.61	2	2	2	2	Laminar	1O, 2PO, 1HJT
	13.93	-	20.14	0	1	0	1	Laminar	1BCZ, 1O, 9PO
	19.50	-	24.72	2	2	2	2	Laminar	2O, 8PO, 2HJT
	24.08	-	29.31	3	2	2	2	Laminar	5PO
	28.65	-	33.76	2	1	2	2	Laminar	4O, 5PO

Table 4.3 – Powerhouse Area Water Pressure Test Summary Continued

	Test Interval		Lugeon Value			Interpreted			
Drill Hole	_	Depth ⁽¹⁾ from Ground Surface (m)		Stage 1	Stage 2	Stage 3	Lugeon Value	Flow Characteristics ⁽²⁾	Significant Feature ⁽³⁾
	32.20	-	41.05	2	2	2	2	Laminar	1LCZ, 3O, 8PO
03-013	7.34	-	12.61	-	1	-	1	N/A	2BLCZ, 1O, 1PO, 2HJT
	11.84	-	17.26	9	14	11	11	Laminar	2BLCZ, 1O, 1PO, HJT's
	16.70	-	21.85	8	8	7	8	Laminar	20
	21.40	-	26.48	7	5	5	6	Laminar	10, 1PO
	25.93	-	30.98	4	3	3	3	Laminar	2PO
	30.46	-	35.53	2	1	1	1	Laminar	1O, 3HJT
	34.96	-	40.57	0	0	0	0	No Take	-
	39.62	-	44.01	1	0	1	1	Laminar	1O, 1PO
03-014	5.49	-	11.32	1	0	-	0	N/A	2BCZ, 4PO
	10.49	-	15.91	5	5	4	5	Laminar	3FOL, 4PO
	15.28	-	20.16	1	2	1	1	Laminar	2O, 8PO
	19.79	-	24.85	5	5	5	5	Laminar	1BCZ, 1LCZ, 1O, 1PO, 1HJT
	24.15	-	29.81	17	14	16	16	Laminar	2BCZ, 1BLCZ, 4LCZ, 2O, 6PO, 3HJT
	28.83	-	34.30	1	1	1	1	Laminar	5O, 3PO, 1HJT
	33.42	-	38.95	1	1	1	1	Laminar	1BCZ, 4O, 9PO
	38.00	-	43.02	1	0	0	1	Laminar	1BCZ, 3O, 9PO
03-015	9.27	-	14.22	-	0	-	0	N/A	5PO
	13.18	-	18.60	0	0	0	0	No Take	1O, 8PO
	17.77	-	23.20	17	15	10	14	Laminar	1BCZ, 5PO, 2FOL
	22.40	-	27.78	3	2	2	2	Laminar	1BCZ, 2PO, 1FOL
	27.13	-	32.50	1	1	1	1	Laminar	2BCZ, 6PO, 1HJT
	31.90	-	37.25	0	1	0	1	Laminar	3PO, 1HJT
	36.44	-	43.82	1	1	1	1	Laminar	1BCZ, 2PO
03-016	5.78	-	11.01	-	0	-	0	N/A	4PO, 1HJT
	10.32	-	15.59	5	5	5	5	Laminar	1BLCZ, 2O, 2PO, 2HJT
	14.88	-	20.17	3	3	3	3	Laminar	1BLCZ, 1O
	19.48	-	24.75	2	2	2	2	Laminar	1BCZ, 4PO, 2HJT

Table 4.3 – Powerhouse Area Water Pressure Test Summary Continued

	Test Interval		Lugeon Value			Interpreted				
Drill	_		n Ground	Stage	_	_	Lugeon	Flow	Significant Feature ⁽³⁾	
Hole		rface		1	2	3	Value	Characteristics ⁽²⁾		
	24.09	-	29.32	2	1	1	1	Laminar	2PO	
	28.63	-	33.87	1	1	1	1	Laminar	3РО	
	33.20	-	38.46	5	5	6	5	Laminar	1BCZ, 1HJT	
	37.78	-	41.01	0	1	0	1	Laminar	-	
03-022	11.42	-	15.87	2	0	0	1	Laminar	7PO, 2HJT	
	15.13	-	20.35	2	2	2	2	Laminar	1BLCZ, 1LCZ, 2O, 4PO, 2HJT	
	19.66	-	25.05	3	2	1	2	Laminar	1BLCZ, 1O	
G-0008	14.40	-	16.40	0	0	0	0	No Take	4O, 3PO	
	17.40	-	19.40	0	0	0	0	No Take	1BLCZ (CJZ), 1O, 3PO	
	20.10	-	22.10	0	0	0	0	No Take	3O	
	23.70	-	25.70	*	*	*	101 (5)	Pump Capacity	3O, 1PO,	
	29.30	-	31.30	0	0	0	0	No Take	2O, 3PO	
	31.50	-	33.50	16	13	16	13	Turbulent	3O, 2PO	
	43.00	-	45.00	0	0	0	0	No Take	1BCZ (CJZ), 3O, 3PO	
	50.50	-	52.50	0	0	0	0	No Take	1O, 1PO	
G-0011	6.70	-	8.70	0	0	0	0	No Take	-	
	12.10	-	14.10	0	0	0	0	No Take	1BLCZ	
	14.70	-	16.70	0	0	0	0	No Take	1НЈТ	
	17.50	-	19.50	0	0	0	0	No Take	2BLCZ	
	21.30	-	23.30	0	0	0	0	No Take	-	
	24.90	-	26.90	0	0	0	0	No Take	-	
	29.50	-	31.50	42	-	-	42	N/A	1PO	
	34.60	-	36.60	0	0	0	0	No Take	20	
	38.20	-	40.20	0	0	0	0	No Take	-	
	41.02	-	43.02	3	3	3	3	Laminar	1BCZ (CJZ), 1O, 2HJT	
	43.50	-	45.50	0	0	0	0	No Take	4O, 1PO	
	45.50	-	47.50	0	0	0	0	No Take	30	

Table 4.3 – Powerhouse Area Water Pressure Test Summary Continued

	Test Interval Depth ⁽¹⁾ from Ground Surface (m)		Lugeon Value			Interpreted			
Drill Hole			Stage 1	Stage 2	Stage 3	Lugeon Value	Flow Characteristics ⁽²⁾	Significant Feature ⁽³⁾	
G-0012	4.00	-	6.00	0	14	0	14	N/A	1LCZ, 1BLCZ (CJZ)
	6.80	-	8.80	0	0	0	0	No Take	1O, 1PO
	9.30	-	11.30	0	0	0	0	No Take	1O, 2PO
	16.20	-	18.20	-	74	-	74	N/A	2O, 3PO
	24.30	-	26.30	0	0	0	0	No Take	1O, 1PO
	29.50	-	31.50	6	6	6	6	Laminar	2O, 4PO
	36.80	-	38.80	0	0	0	0	No Take	1BLCZ, 1O
	43.60	-	45.60	0	0	0	0	No Take	1O, 2PO
	48.00	1	50.00	0	0	0	0	No Take	10
G-0013	3.00	1	5.00	0	0	0	0	No Take	1O, 1PO
	5.50	-	7.50	0	0	0	0	No Take	-
	9.70	1	11.70	0	0	0	0	No Take	1O, 1PO
	12.40	-	14.40	0	0	0	0	No Take	2PO
	18.50	1	20.50	8	0	0	0	Dilation	1BCZ, 2O
	21.50	1	23.50	20	24	0	0	Void Filling	-
	26.30	1	28.30	0	0	0	0	No Take	3РО
	27.40	1	29.40	0	0	0	0	No Take	1BCZ, 2PO
	41.50	1	43.50	0	0	0	0	No Take	10
G-0014	8.00	1	10.00	0	0	0	0	No Take	-
	10.03	-	12.03	0	0	0	0	No Take	1BCZ, 1PO, 1HJT
	13.30	1	15.30	0	0	0	0	No Take	1BCA, 10, 1PO
	16.90	-	18.90	0	0	0	0	No Take	1BCZ, 1O
	19.20	1	21.20	0	0	0	0	No Take	1BCZ, 1O
	22.00	-	24.00	4	-	1	4	N/A	1BCZ, 1HJT
	24.50	-	26.50	0	0	0	0	No Take	3O, 2PO
	27.50	-	29.50	0	0	0	0	No Take	1BCZ (SHEAR), 2PO
	29.50	-	31.50	0	0	0	0	No Take	2BCZ (SHEAR)
	31.50	-	33.50	0	0	0	0	No Take	2BCZ (SHEAR), 1PO

Table 4.3 – Powerhouse Area Water Pressure Test Summary Continued

	Test Interval			Lugeon Value			Interpreted		
Drill Hole	Depth ⁽¹⁾ from Ground Surface (m)		Stage 1	Stage 2	Stage 3	Lugeon Value	Flow Characteristics ⁽²⁾	Significant Feature ⁽³⁾	
	37.30	-	39.30	0	0	0	0	No Take	5O, 2PO
	40.20	1	42.20	0	0	0	0	No Take	1OP, 1HJT
G-0015	6.50	-	9.50	0	0	0	0	No Take	1LCZ, 1O, 2PO
	11.20	1	14.20	0	0	0	0	No Take	1LCZ, 10
	16.50	-	19.50	0	0	0	0	No Take	10
	21.00	-	24.00	0	0	0	0	No Take	3O
	25.00	-	28.00	1	2	ı	2	N/A	3O, 2PO, 1HJT
	34.50	-	37.50	17	18	18	18	Laminar	2BCZ, 2O
	38.40	-	41.40	28	29	31	29	Laminar	2BCZ (1CJZ), 1O, 1PO, 1HJT
	41.80	-	44.80	0	0	0	0	No Take	5O,3PO, 1HJT
G-0016	6.00	-	9.00	-	38	-	38	N/A	1BLCZ (CJZ), 1BCZ (CJZ), 9O, 3PO
	11.20	-	14.20	0	0	0	0	No Take	4O, 3PO, 1HJT
	14.50	-	17.50	25	20	25	20	Turbulent	30
	18.86	-	21.86	15	14	14	14	Laminar	4O, 1PO, 1HJT
	24.00	1	27.00	19	16	15	15	Void Filling	10, 1PO
	29.50	1	32.50	0	0	0	0	No Take	1O, 1PO
	34.11	-	37.11	2	-	-	2	N/A	1PO
	37.16	-	40.16	5	4	4	4	Laminar	1O, 2PO, 1HJT

- (1) Depths listed are measured along the central axis of the core.
- (2) Flow types are based on Houlsby (1976) rules.
- (3) BCZ Broken Core Zone
 - BLCZ Broken Lost Core Zone
 - LCZ Lost Core Zone
 - CJZ Closely Jointed Zone
 - O Open Joint
 - PO Partly Open Joint
 - HJT Healed Joint
 - FOL Foliation
 - SHEAR Shear Zone, usually brittle
 - N/A Not Applicable. Flow pattern unassigned.
- (4) The depths recorded for borehole 03-011 have been adjusted.
- (5) WPT exceeding pump capacity were assigned a value of 101.

Table 4.4 Keeyask GS - Stage IV Investigation Program, Axis GR-4 Interpreted Flow Characteristics

	1988 & 1991	2003	Total Number of
Interpreted Flow Characteristics	Investigations	Investigations	Tests
Tight (i.e., no take)	47	5	52
Laminar	6	47	53
Turbulent	2	0	2
Dilation	1	1	2
Void Filling	2	0	2
N/A ⁽²⁾	7	7 ⁽¹⁾	14
Pump Capacity	1	0	1
Total Number of Tests	66	60	126

Table 4.5 Keeyask GS - Stage IV Investigation Program, Axis GR-4 Summary of Joint Trend Measurements in Powerhouse Area

Powerhouse		Orientation		
Joint Set	Strike (deg)	Dip (1) (deg)	Dip Direction (deg)	Description
J 1	198	1	288	Major, subhorizontal joint set
J2	320	30	50	Major
J3	60	23	150	Major
J4	237	25	327	Major
J5	335	80	65	Minor, subvertical joint set
J6	65	53	155	Minor

⁽¹⁾Note:

Dip from horizontal. Dip direction is 90 deg right of the strike.

⁽¹⁾ Less than three steps were conducted.

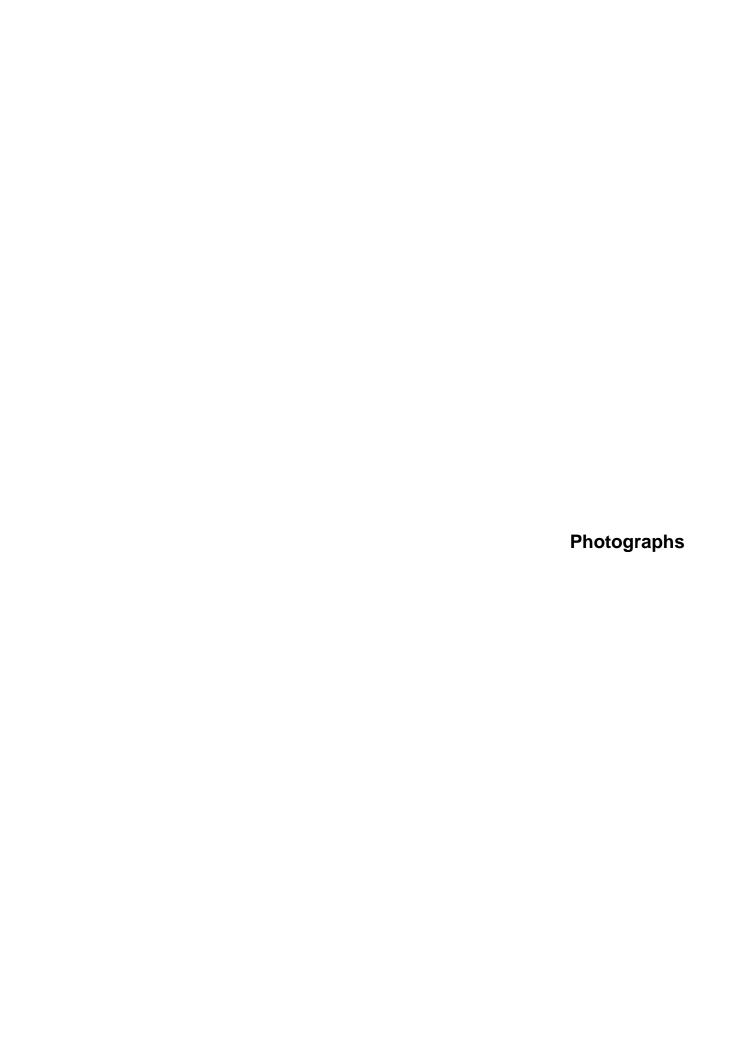
⁽²⁾ N/A Not Applicable, flow pattern not assigned.

Table 5.1 Keeyask GS - Stage IV Investigation Program, Axis GR-4 Powerhouse Area – RMR₈₉ and GSI Values

	Powerho	use Area
Parameter	Value	Rating
Point Load Index	7.6 MPa	12
RQD	89%	19
Spacing of discontinuities	286 mm	10
Condition of discontinuities	Note (1)	22
Groundwater	Note (2)	15
Adjustment for joint orientation	-	0
RMR ₈₉ (3)	-	78
Rock Mass Class	-	II
Description of Rock Mass	-	Good Rock
GSI (4)	-	73

- (1) Figure 11, Section E was used to obtain a more refined rating.
- (2) During rock excavation, it is assumed that sidewalls and foundation conditions will be dry.
- (3) This value is based on in situ rock conditions and assumes no stability treatment(s) (such as rock bolting), has been undertaken to prevent possible planar sliding, toppling, and/or wedge failure, due to the orientation of joint sets. Treatment recommendations and a thorough analysis of major/minor joint sets are discussed in Memorandum GN-4.2.2.8, Rock Support and Temporary Drainage [Ref 22].
- (4) $GSI = RMR_{89} 5$. Where RMR_{89} has the groundwater rating set to 15 and the adjustment for joint orientation set to zero.

Table 5.2 Keeyask GS - Stage IV Investigation Program, Axis GR-4 Summary of Analysis of Rock Strength Parameters Using RocLab


Summary of Analysis of Rock Streng	Rock Types						
Properties	Greywacke Gneiss	Amphibolite	Granite	Diabase Dykes			
Hoek-Brown Classification							
Intact Uniaxial Compressive Strength (1) (MPa)	175	175	250	175			
Geological Strength Index (GSI)	73	73	73	73			
Intact Rock Parameter (mi)	28	26	32	27			
Disturbance Factor (slopes) (2)	0.7	0.7	0.7	0.7			
Hoek-Brown Generalized Failure Crit	erion						
m _b (material constant) (3)	6.35	5.9	7.26	6.125			
s (material constant) (4)	0.02	0.02	0.02	0.02			
a (variable coefficient) (5)	0.5	0.5	0.5	0.5			
Mohr-Coloumb Fit							
Cohesion (MPa)	13.67	13.42	20.21	13.54			
Friction Angle	42	41.22	43	41.55			
Rock Mass Parameters							
Tensile Strength (MPa)	-0.55	-0.59	-0.69	-0.57			
Uniaxial Compressive Strength (MPa)	24.63	24.63	35.19	24.63			
Global Strength (MPa)	61.22	59.18	93.02	60.2			
Modulus of Deformation (MPa)	35 075	30 064	40 563	30 065			

Based on field estimates

Disturbance Factor for slopes using good blasting techniques

 m_b is a reduced value of the material constant m_i , which is based on the rock type and texture, where: $m_b = m_i \exp[(GSI-100)/$ (28-14D)] mi is the material constant, obtained from Hoek 2006, see table in Appendix C

s=1 for intact rock, as per Hoek a = 1/2 + 1/6 (e^{-GSI/15} – e^{-20/3})

Photo 1: View looking east/northeast (downstream), showing Powerhouse location. Dash lines outline the Powerhouse area and its associated channels.

Photo 2: View looking west, showing Powerhouse Intake Channel Area and Rock Quarry Q-7.

Photo 3: View looking northeast/east, showing Powerhouse Intake Area.

Photo 4: View looking east (downstream), showing Intake Channel and Powerhouse Area.

Photo 5: View looking east (downstream), showing Tailrace channel Area.

Photo 6: View looking southwest, showing Intake Channel Area.

Appendix A

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

Drill Hole: 03-008	Geological		rill Run		Reco	overy	RC)D	Jts	Average ⁽³⁾	Recovery (%) 0 25 50 75 100	RQD (%) 0 25 50 75 100	Joints per run 0 5 10 15 20 25
Date: Jul. 24/03	Description ⁽³⁾	Depth (m - alo	ng core axis)	Length	Len	igth	Len	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	
		From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)			
Dip: 90 deg.	Greywacke Gneiss: grey to dark grey, fine grained to very fine grained, strong, indistinct	9.61	11.13	1.52	1.51	99	1.38	91	8 +	168			
Azimuth: - deg.	foliation at 0 to 30 degrees to the core axis,	11.13	12.66	1.53	1.47	96	1.31	86	10 +	134	38888888888888888		
3rd. Elev.: 146.68 m	moderately spaced, good to excellent quality,	12.66	14.18	1.52	1.52	100	1.39	91	7	190			
Depth: 20.29 m	low permeability.	14.18	15.71	1.53	1.53	100	1.29	84	7	191			
		15.71	17.23	1.52	1.52	100	1.35	89	8	169	500000000000000000000000000000000000000		
		17.23	18.74	1.51	1.51	100	1.51	100	3	378			
		18.74	19.41	0.67	0.67	100	0.67	100	1	335	1:00:00:00:00:00:00:00:00:00:00:00:00:00		10000
		19.41	20.29	0.88	0.71	81	0.65	74	5 +	118		38338383838	8888
			Total =	10.68	10.44		9.55		49				
			Average =	1.34		97.8		89	6	214			

Drill Hole: (03-009	Geological		rill Run		Reco	very	RC	D	Jts	Average ⁽³⁾	Recovery (%) 0 25 50 75 100	RQD (%) 0 25 50 75 100	Joints per run 0 5 10 15 20 25
Date: .	Jul. 18/03	Description ⁽³⁾	Depth (m - alo	ng core axis)	Length	Len	gth	Len	gth	per	Spacing		0 25 50 75 100	
			From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)		000000000000000000000000000000000000000	
Dip:	90 deg.	Greywacke Gneiss: grey to dark grey, very	8.97	9.74	0.77	0.77	100	0.66	86	7	96			
Azimuth:	- deg.	fine grained, strong, indistinct foliation at 10 to 15 degrees to the core axis, closely spaced,	9.74	9.91	0.17	0.17	100	0.13	76	2	57			
3rd. Elev.:	147.08 m	good quality, low permeability.	9.91	10.31	0.40	0.40	100	0.32	80	2	133			
Depth:	18.99 m		10.31	10.91	0.60	0.60	100	0.47	78	9	60			a
			10.91	11.29	0.38	0.38	100	0.30	79	2	127			
			11.29	12.87	1.58	1.58	100	1.10	70	21 +	72			
			12.87	14.40	1.53	1.53	100	1.26	82	12	118			33333
			14.40	15.94	1.54	1.54	100	1.39	90	8	171			00000000
			15.94	17.46	1.52	1.52	100	1.25	82	13 +	109			333
			17.46	18.99	1.53	1.50	98	1.43	93	6	214			
				Total =	10.02	9.99		8.31		82				
				Average =	1.00		99.7		83	8	121			

Appendix A
Keeyask Generating Station
Stage IV Investigation Program - Axis GR-4
Bedrock Summary Log: Powerhouse Area

Drill Hole: 03-010	Geological	D	rill Run	1	Reco	very	RC	(D	Jts	Average ⁽³⁾	Recovery (%) RQD (%) Joints per run 0 25 50 75 100 0 25 50 75 100 0 5 10 15 20 25
Date: Jul. 27/03	Description ⁽³⁾	Depth (m - alor	ng core axis)	Length	Len	gth	Len	gth	per	Spacing	25 50 75 100 0 0 10 10 20 20
		From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)	
Dip: 70 deg.	3.79-32.44 Greywacke gneiss: light to medium greenish grey, coarse to very coarse	3.79	5.34	1.55	1.52	98	1.52	98	2 +	507	
Azimuth: 231 deg.	grained, strong, distinct to indistinct planar to	5.34	6.16	0.82	0.74	90	0.67	82	4 +	148	
3rd. Elev.: 138.16 m	irregular foliation, closely to moderately	6.16	7.68	1.52	1.44	95	1.21	80	7 +	180	33333333333 3333333 333333 333333 333333
Depth: 43.52 m	spaced, good quality, low permeability, occasional granitic bands.	7.68	9.27	1.59	1.40	88	0.81	51	13 +	100	######################################
	occasional granuc bands.	9.27	9.72	0.45	0.45	100	0.26	58	7	56	
Barge Hole	32.44-39.50 Granite: light to medium greenish	9.72	10.82	1.10	1.10	100	0.98	89	3 +	275	
	grey, coarse to very coarse grained, strong, no distinct foliation, very closely spaced, good	10.82	12.35	1.53	1.53	100	1.53	100	5	255	######################################
	quality, low permeability.	12.35	13.87	1.52	1.52	100	1.52	100	5	253	888888888888888888888888888888888888888
	39.50-43.52 Greywacke gneiss: light to	13.87	15.40	1.53	1.53	100	1.43	93	8	170	
	medium greenish grey, coarse to very coarse	15.40	16.91	1.51	1.51	100	1.10	73	7	189	
	grained, moderately strong, distinct to	16.91	18.44	1.53	1.53	100	1.53	100	2	510	
	indistinct planar to irregular foliation, moderately spaced, excellent quality, low	18.44	19.96	1.52	1.52	100	1.38	91	6	217	
	permeability, occasional granite intrusions.	19.96	21.48	1.52	1.52	100	1.46	96	7	190	
		21.48	23.00	1.52	1.52	100	1.38	91	6	217	
		23.00	24.52	1.52	1.50	99	1.32	87	5 +	250	20000000000000000000000000000000000000
		24.52	26.05	1.53	1.53	100	1.34	88	6	219	888888888888888888888888888888888888888
		26.05	27.57	1.52	1.52	100	1.39	91	8	169	50000000000000000000000000000000000000
		27.57	29.09	1.52	1.52	100	1.52	100	4	304	888888888888888888888888888888888888888
		29.09	30.49	1.40	1.40	100	1.38	99	9	140	555555555555555555555555555555555555555
		30.49	32.03	1.54	1.54	100	1.40	91	9	154	50000000000000000000000000000000000000
		32.03	33.58	1.55	1.53	99	1.30	84	12 +	118	
		33.58	35.09	1.51	1.51	100	0.81	54	17	84	55555555555555555555555555555555555555
		35.09	36.62	1.53	1.53	100	1.42	93	8	170	
		36.62	38.10	1.48	1.48	100	1.43	97	8	164	
		38.10	39.66	1.56	1.56	100	1.50	96	9	156	
		39.66	41.21	1.55	1.55	100	1.55	100	3	388	
		41.21	42.74	1.53	1.53	100	1.38	90	6	219	
		42.74	43.52	0.78	0.78	100	0.76	97	3	195	
										1	
			Total =	39.73	39.31		35.28		189		
			Average =	1.42		98.9		89	7	209	

Appendix A
Keeyask Generating Station
Stage IV Investigation Program - Axis GR-4
Bedrock Summary Log: Powerhouse Area
(For notes, see page 18)

Date: J	ul. 31/03
Dip:	70 deg.
Azimuth:	230 dea

Drill Hole: 03-011

Barge Hole

Dip: 70 deg.
Azimuth: 230 deg.
3rd. Elev.: 136.31 m
Depth: 43.70 m

Geological		rill Run		Reco	very	RC	QD	Jts	Average ⁽³⁾	Recovery (%) 0 25 50 75 100		RQD (%)	Joints per run 0 5 10 15 20 25
Description**	Depth (m - alo	ng core axis)	Length	Len	gth	Len	gth	per	Spacing		0 2	25 50 75 100	U 0 10 10 20 20
	From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)				
8.69-19.58 Granite, light grey, medium to coarse grained, strong, closely spaced, good	8.69	9.85	1.16	1.16	100	0.69	59	14	77				
quality, low permeability, hard drilling,	9.85	11.17	1.32	1.28	97	0.49	37	26 +	47		91616		
occasional amphibolite xenoliths.	11.17	12.66	1.49	1.49	100	0.90	60	20 +	71				
19.58-24.62 Amphibolite: dark grey to black,	12.66	14.20	1.54	1.54	100	0.76	49	32 +	47				
very fine grained, strong, distinct foliation	14.20	15.76	1.56	1.56	100	1.48	95	9 +	156		111111		
varies from 90 to 45 degrees to the core axis,	15.76	17.27	1.51	1.51	100	1.42	94	8	168		1888		
moderately spaced, good to excellent quality, low impermeable.	17.27	18.83	1.56	1.56	100	1.24	79	10	142		11111		
	18.83	20.07	1.24	1.24	100	1.13	91	9	124		1919191		
24.62-41.16 Granite: white to light pink, fine to medium grained, strong, no foliation evident,	20.07	20.28	0.21	0.21	100	0.21	100	1	105		9300		
closely spaced, good quality, practically	20.28	21.76	1.48	1.48	100	1.42	96	6	211		1313131		
impermeable.	21.76	23.29	1.53	1.53	100	1.44	94	4	306		93333		
41.16-43.70 Amphibolite: same as above,	23.29	24.82	1.53	1.53	100	1.19	78	15	96		9999		
closely spaced, excellent quality, low	24.82	26.30	1.48	1.48	100	1.33	90	3	370		121111		
permeability.	26.30	27.80	1.50	1.50	100	1.31	87	10 +	136		93333		
	27.80	29.32	1.52	1.52	100	1.49	98	2	507		23222		Б
	29.32	30.84	1.52	1.52	100	1.52	100	1	760		90000		
	30.84	32.36	1.52	1.52	100	1.08	71	15 +	95	200000000000000000000000000000000000000	020202		333333
	32.36		1.51	1.51	100	1.42	94	10 +	137		33333		10000
	33.87	35.40	1.53	1.53	100	1.37	90	7	191		231212		3333
	35.40	36.93	1.53	1.53	100	1.31	86	7	191		333333		1999
	36.93	38.49	1.56	1.56	100	1.52	97	6	223	*******************	23,2,2,		0000000000
	38.49	39.99	1.50	1.50	100	1.29	86	13 +	107		1111111		0000000000
	39.99	41.57	1.58	1.58	100	1.16	73	14 +	105		1111111		000000000000000000000000000000000000000
	41.57	43.10	1.53	1.53	100	1.49	97	6 +	219		111111		h
	43.10	43.70	0.60	0.59	98	0.59	98	1	295		<u>liticici</u>		
		Total =	35.01	34.96		29.25		249					

10 140

Average = 1.40

99.9

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area (For notes, see page 18)

Date: Ju	I. 31/03
Dip:	90 dea.

Drill Hole: 03-012	3		Drill Run		Recovery		RQ	_D I	Jts	Average ⁽³⁾	Recovery (%) RQD (%) Joints per run 0 25 50 75 100 0 05 50 75 400 0 5 10 15 20	
Date: Jul. 31/03	Description ⁽³⁾	Depth (m - aloi	-	Length	Len	,	Lend		per	Spacing	0 25 50 75 100 0 25 50 75 100 0 5 10 15 20 3	25
		From	To	(m)	(m)	(%)	1.	(%)	run	per Jt. (mm)		11
Dip: 90 deg.	3.22-14.85 Amphibolite: dark grey to black,	3.22	3.45	0.23	0.23	100	0.00	0	3	58		
Azimuth: - deg.	fine grained, moderately strong to strong, no	3.45	4.97	1.52	1.52	100	1.35	89	10	138	333333333333333333333333333333333333333	
3rd. Elev.: 137.78 m	distinct foliation, closely spaced, good quality, low permeability, contains fine to coarse-	4.97	6.45	1.48	1.39	94	1.19	80	5+	232		
Depth: 41.05 m	grained white to light grey granitic bands.	6.45	7.97	1.52	1.52	100	1.44	95	6	217		
Бериі. 41.03 ііі	Foliation and granitic bands varies from 30 to	7.97	9.50	1.53	1.53	100	1.43	93	6	217		
Barge Hole	45 degrees to the core axis. Granitic bands locally cross cut foliation.	9.50	11.02	1.52	1.52	100	1.19	78	13	109		
barge note	locally cross cat foliation.	11.02	12.55	1.53	1.53	100	1.19	96	5	255		
	14.85-21.05 Granite: light grey/green to light	12.55	14.07	1.53	1.52	100	1.38	91	6	217	333333333333333333333333333333333333333	
	pink/green, medium to coarse grained, strong, no distinct foliation, closely spaced, good	14.07	15.61	1.54	1.54	100	1.54	100	5	257	333333333333333333333333333333333333333	
	quality, low impermeability.			1.54	1.54	100		100	8	168	333333333333333333333333333333333333333	
	04.05.04.40. Association and a second	15.61	17.12				1.51	77	0 12	115		
	21.05-34.10 Amphibolite: same as above, strong, with granite intrusions.	17.12	18.61	1.49	1.49	100 100	1.15		7	115		
		18.61	20.14	1.53	1.53	100	1.46	95	•	-		
	34.10-41.05 Granite: same as above, greyish	20.14	21.71	1.57	1.57		1.39	89	13	112		
	green, closely spaced, good quality, low impermeability.	21.71	23.22	1.51	1.51	100	1.43	95	7	189		
	,	23.22	24.72	1.50	1.50	100	1.33	89	9	150	333333333333 3333333333333 334 334 334	
		24.72	26.26	1.54	1.54	100	1.47	95	5	257		
		26.26	27.80	1.54	1.54	100	1.20	78	9	154		
		27.80	29.31	1.51	1.51	100	1.33	88	11	126		
		29.31	30.66	1.35	1.35	100	1.01	75	10	123		
		30.66	32.18	1.52	1.52	100	1.28	84	12	117	33333333333333	
		32.18	33.76	1.58	1.58	100	1.47	93	10	144	333333333333333333333333333333333333333	
		33.76	34.56	0.80	0.80	100	0.56	70	6	114		
		34.56	35.41	0.85	0.85	100	0.64	75	6	121		
		35.41	36.45	1.04	1.03	99	0.92	88	8 +	114		
		36.45	36.94	0.49	0.49	100	0.39	80	4	98		
		36.94	38.46	1.52	1.52	100	1.45	95	4	304		
		38.46	39.96	1.50	1.50	100	1.36	91	7	188		١.
		39.96	41.05	1.09	1.05	96	1.05	96	4	210		
										0]
			Total =	37.83	37.69		33.39		211			
			Average =	1.35		99.6		88	8	178		

Appendix A
Keeyask Generating Station
Stage IV Investigation Program - Axis GR-4
Bedrock Summary Log: Powerhouse Area
(For notes, see page 18)

Drill Hole: 03-013	l outsta	l 5	31 D	ĺ	5	1		_		I (3) I	Recovery (%)	RQD (%)	Joints per run
** * * * *	Geological Description ⁽³⁾	Depth (m - alor	rill Run	Longth	Reco		RQ Lend		Jts	Average ⁽³⁾	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
Date: Aug. 5/03	Description	From	To	Length (m)	(m)	(%)	(m)	(%)	per run	Spacing per Jt. (mm)	0 25 30 75 100	0 25 50 75 100	0 3 10 13 20 23
Dip: 69 deg.	4.75-14.45 Granite: white to light grey with	4.81	6.08	1.27	1.27	100	1.16	91	7	159			
Azimuth: 63 deg.	some pink/green, medium to coarse grained,	6.08	7.67	1.59	1.57	99	1.36	86	9 +	157			
3rd. Elev.: 137.32 m	strong, good quality, medium permeability.	7.67	8.46	0.79	0.79	100	0.75	95	4	157			
Depth: 44.01 m	14.45-29.08 Amphibolite: black/dark green,	8.46	9.11	0.79	0.79	100	0.75	100	2	217			
Depth. 44.01 III	fine grained, strong, good quality, medium	9.11	9.11	0.65	0.65	100	0.65	100	1	205			
Darge Hale	permeability, occasional granite intrusions.	9.52	11.08	1.56	1.56	100	1.22	78	11	130			
Barge Hole	29.08-44.01 Granite: same as above, low								7 +	189			
	permeability.	11.08	12.61	1.53	1.51	99	1.35	88					8888888
		12.61	14.16	1.55	1.55	100 100	1.29	83	12	119			
		14.16	15.69	1.53	1.53		1.22	80	12	118			#
		15.69	17.26	1.57	1.57	100	1.53	97	4	314			
		17.26 18.86	18.86 20.36	1.60	1.60	100 100	1.60	100	3	400			
				1.50	1.50		1.50	100	3	375			
		20.36	21.85	1.49	1.49	100	1.40	94	8	166			HH
		21.85	23.39	1.54	1.54	100	1.47	95	4	308			8888
		23.39	24.96	1.57	1.57	100	1.33	85	9	157			
		24.96	26.48	1.52	1.52	100	1.18	78	13	109			### ### ###
		26.48	28.00	1.52	1.52	100	1.43	94	6	217			
		28.00	28.84	0.84	0.84	100	0.78	93	5	140			
		28.84	29.87	1.03	1.03	100	0.93	90	4	206			同日日日
		29.87	30.98	1.11	1.11	100	1.11	100	3	278			
		30.98	32.47	1.49	1.49	100	1.46	98	4	298			
		32.47	33.38	0.91	0.91	100	0.82	90	4	182			500000
		33.38	34.43	1.05	1.05	100	0.94	90	8	117			
		34.43	35.53	1.10		100	0.84	76	9	110		900000000000000000000000000000000000000	
		35.53	36.50	0.97	0.97	100	0.68	70	8	108			3333 333 333 333 333 333 333 333 333 3
		36.50	37.48	0.98	0.98	100	0.89	91	6	140			
		37.48	39.00	1.52	1.52	100	1.44	95	5	253			
		39.00	40.57	1.57	1.57	100	1.53	97	6	224	555555555555555		1000000 1000000
		40.57	42.05	1.48	1.48	100	1.22	82	10	135			
		42.05	43.60	1.55	1.55	100	1.46	94	6	221			1
		43.60	44.01	0.41	0.38	93	0.38	93	1 +	190	1001001001001001001001001001	[-10.00.00.00.00.00.00.00.00.00.00.00.00.0	
	I	l l	T	00.65	00.46		05.00		404	ı l			
			Total =	39.20	39.13		35.33		194				

99.8

Average = 1.26

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

Drill Hole: 03-014	Geological	D	rill Run		Reco	very	RQ	D	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run
Date: Aug. 19/03	Description ⁽³⁾	Depth (m - alor	ng core axis)	Length	Len	gth	Leng	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
		From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)	000000000000000000000000000000000000000		
Dip: 68 deg.	3.71-30.25 Greywacke gneiss: dark grey, medium to fine grained, strong, distinct foliation	3.71	4.09	0.38	0.38	100	0.38	100	0	380			
Azimuth: 231 deg.	at 30 to 60 degrees to the core axis, closely	4.09	5.48	1.39	1.35	97	1.21	87	8	154			
3rd. Elev.: 137.52 m	spaced, low permeability, occasional granitic	5.48	6.73	1.25	1.25	100	0.97	78	9	125			
Depth: 43.02 m	intrusions.	6.73	8.27	1.54	1.54	100	0.87	56	18 +	81			1000000
	30.25-37.20 Granite: light pink to orange,	8.27	9.80	1.53	1.53	100	1.29	84	11 +	128			
Barge Hole	coarse grained, strong, closely spaced, practically impermeable, dark inclusions.	9.80	10.36	0.56	0.56	100	0.42	75	8	62			
	practically impermeable, dark inclusions.	10.36	11.32	0.96	0.96	100	0.96	100	5	160			
	37.20-43.02 Greywacke gneiss: dark grey,	11.32	12.85	1.53	1.53	100	1.39	91	7	191			
	medium to fine grained, strong, distinct to weakly distinct foliation, closely spaced,	12.85	14.37	1.52	1.52	100	1.43	94	7	190			111111111111111111111111111111111111111
	practically impermeable.	14.37	15.91	1.54	1.54	100	1.15	75	9	154			100000000000000000000000000000000000000
		15.91	17.42	1.51	1.51	100	0.85	56	23	63			
		17.42	18.97	1.55	1.55	100	1.13	73	15	97			
		18.97	20.16	1.19	1.19	100	1.12	94	6	170			
		20.16	20.66	0.50	0.50	100	0.50	100	3	125			000000
		20.66	22.17	1.51	1.51	100	1.39	92	11	126			100
		22.17	23.75	1.58	1.58	100	1.58	100	4	316			55555555555
		23.75	24.85	1.10	1.08	98	0.85	77	17 +	61			1
		24.85	25.33	0.48	0.48	100	0.48	100	1	240		********	U
		25.33	25.87	0.54	0.50	93	0.14	26	6 +	77		100000000000000000000000000000000000000	(2000)
		25.87	26.73	0.86	0.86	100	0.65	76	7	108			(0)(0)(0)
		26.73	27.61	0.88	0.85	97	0.64	73	7 +	110		100000000000000000000000000000000000000	133
		27.61	27.91	0.30	0.25	83	0.00	0	3 +	75		concension and a	
		27.91	28.35	0.44	0.44	100	0.38	86	2	147			
		28.35	29.81	1.46	1.46	100	1.42	97	7	183			100 H
		29.81	31.25	1.44	1.44	100	1.44	100	5	240			222
		31.25	32.76	1.51	1.51	100	1.43	95	5	252			333 2000200000
		32.76	34.30	1.54	1.54	100	0.74	48	17	86		33333333333	20000000
		34.30	35.85	1.55	1.55	100	1.32	85	10	141			
		35.85	37.37	1.52	1.52	100	1.43	94	6	217			
		37.37	38.95	1.58	1.58	100	1.53	97	6 +	226			
		38.95	40.30	1.35	1.35	100	1.26	93	4	270			
		40.30	41.82	1.52	1.52	100	1.47	97	3	380			
		41.82	43.02	1.20	1.08	90	0.81	67	13 +	86			121011111111111111111111111111111111111
		[I			
			Total =	39.31	39.01		32.63		263				
			Average =	1.19		99.2		83	8	149			

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

Drill Hole: 03-015	Geological	D	rill Run	ĺ	Reco	very	RQ	D	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run
Date: Aug. 11/03	Description ⁽³⁾	Depth (m - alor	ng core axis)	Length	Len	gth	Leng	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
		From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)	20.000.000.000.000	9999999999999	888
Dip: 70 deg.	7.66-25.79 Amphibolite: black to dark green, fine to very fine grained, strong, indistinct to	7.66	8.57	0.91	0.91	100	0.83	91	7	114			
Azimuth: 277 deg.	distinct foliation varying between 0 and 35	8.57	10.05	1.48	1.48	100	1.48	100	4	296	500000000000000000000000000000000000000		1999
3rd. Elev.: 136.51 m	degrees to the core axis, moderately spaced,	10.05	11.63	1.58	1.58	100	1.58	100	6	226			888
Depth: 43.82 m	low permeability.	11.63	12.70	1.07	1.07	100	0.82	77	7	134			100
	25.79-43.82 Granite: pink/grey to white,	12.70	14.22	1.52	1.52	100	1.42	93	5	253			333 333 333
Barge Hole	medium grained, moderately strong to strong,	14.22	15.59	1.37	1.37	100	1.33	97	6	196			9999
	closely spaced, good quality, practically impermeable.	15.59	17.11	1.52	1.52	100	1.44	95	8	169			
		17.11	18.60	1.49	1.49	100	1.49	100	4	298			100
		18.60	19.90	1.30	1.30	100	1.27	98	6	186			988
		19.90	21.45	1.55	1.55	100	1.50	97	5 +	258			
		21.45	21.72	0.27	0.27	100	0.27	100	1	135			
		21.72	23.20	1.48	1.48	100	1.48	100	4	296			
		23.20	23.87	0.67	0.67	100	0.64	96	5	112			
		23.87	24.73	0.86	0.86	100	0.83	97	3	215			221
		24.73	26.25	1.52	1.52	100	1.29	85	6	217			
		26.25	26.44	0.19	0.19	100	0.15	79	3 +	48			231
		26.44	27.78	1.34	1.34	100	1.01	75	12	103			(2000)
		27.78	29.05	1.27	1.27	100	1.22	96	8	141		************	2000
		29.05	29.62	0.57	0.57	100	0.26	46	7 +	71		100100000000000000000000000000000000000	33333
		29.62	30.98	1.36	1.36	100	1.12	82	13 +	97			2000000000
		30.98	32.50	1.52	1.52	100	1.27	84	12	117	811111111111111111111111111111111111111		50000000000000000000000000000000000000
		32.50	34.01	1.51	1.51	100	1.37	91	8	168			22222
		34.01	35.46	1.45	1.45	100	1.21	83	9	145			500000
		35.46	36.27	0.81	0.81	100	0.56	69	9	81			
		36.27	37.25	0.98	0.98	100	0.98	100	1	490			
		37.25	38.77	1.52	1.52	100	1.32	87	8	169			
		38.77	40.16	1.39	1.39	100	1.30	94	8	154			
		40.16	41.57	1.41	1.41	100	1.27	90	9 +	141			
		41.57	43.14	1.57	1.57	100	1.24	79	12	121			
		43.14	43.82	0.68	0.68	100	0.68	100	2	227			
				l									
			Total =	36.16	36.16		32.63		198				
			Average =	1.21		100.0		90	7	182			

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

Drill Hole: 03-016		Geological	D	rill Run		Reco	very	RC)D	Jts	Average**	Recovery (%) RQD (%) Joints	per run
Date: Jul. 22/	03	Description ⁽³⁾	Depth (m - alor	ng core axis)	Length	Len	gth	Len	gth	per	Spacing	0 25 50 75 100 0 25 50 75 100 0 5 10	15 20 25
			From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)		+
Dip: 90	deg.	4.36-8.15 Greywacke gneiss: medium to dark grey, fine grained, moderately strong to strong,	4.36	5.87	1.51	1.51	100	1.37	91	8	168		
Azimuth: -	deg.	distinct to indistinct irregular and planar	5.87	6.45	0.58	0.58	100	0.47	81	6	83		-
3rd. Elev.: 137.30) m	foliation, closely spaced, good quality.	6.45	7.97	1.52	1.52	100	1.24	82	15	95		7
Depth: 41.01	1 m	8.15-19.45 Granite: pink to light grey, fine to	7.97	9.50	1.53	1.53	100	1.33	87	9	153	99999999999999	
		coarse grained, strong, no foliation evident,	9.50	10.28	0.78	0.78	100	0.72	92	6	111		
Barge Hole		closely spaced, good quality.	10.28	11.01	0.73	0.73	100	0.58	79	4	146		203
			11.01	12.54	1.53	1.53	100	1.09	71	17	85		T
			12.54	14.07	1.53	1.53	100	1.18	77	13	109		'
			14.07	15.59	1.52	1.38	91	1.16	76	11 +	127		
			15.59	17.11	1.52	1.52	100	1.42	93	8	169		
			17.11	18.64	1.53		100	1.53	100	8	170		
			18.64	20.17	1.53	1.52	99	1.50	98	7 +	191		
			20.17	21.69	1.52	1.52	100	1.47	97	8	169		
			21.69	23.21	1.52		99	1.28	84	10 +	138		
			23.21	24.75	1.54	1.54	100	1.21	79	11	128		
			24.75	26.26	1.51	1.51	100	1.30	86	11	126		
			26.26	27.80	1.54	1.54	100	1.45	94	7	193		
			27.80	29.32	1.52		100	1.30	86	9	152		
			29.32	30.84	1.52	1.52	100	1.47	97	6	217		
			30.84	32.34	1.50	1.50	100	1.40	93	6	214		
			32.34	33.87	1.53		100	1.39	91	7	191		
			33.87	35.42	1.55		99	1.46	94	8 +	172		
			35.42	36.95	1.53		100	1.47	96	9	153		
			36.95	38.46	1.51	1.51	100	1.43	95	3	377		
			38.46	39.99	1.53		100	1.38	90	6	219		
			39.99	41.01	1.02	1.02	100	0.82	80	7	128		
											[
				Total =		36.48		32.42		220			
				Average =	1.41		99.5		88	8	166		

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

Drill Hole: 03	3-022	Geological	D	rill Run		Reco	very	RC	QD D	Jts	Average**	Recovery (%)	RQD (%)	Joints per run
Date: Au	ug. 31/03	Description ⁽³⁾	Depth (m - alor	ng core axis)	Length	Len	gth	Len	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
			From	То	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)			
Dip:	90 deg.	9.86-15.40 Amphibolite: black to dark green, medium to fine grained, distinct irregular foliation at	9.86	9.99	0.13	0.13	100	0.00	0	2	43			
Azimuth:	- deg.	various angles to the core axis, moderately strong to	9.99	11.28	1.29	1.29	100	1.09	84	6	184			888
3rd. Elev.: 1	49.54 m	strong, closely spaced, good quality.	11.28	12.82	1.54	1.54	100	1.44	94	7	193			888888
Depth:	25.05 m	15.40-20.05 Granite: light grey to white, and pink,	12.82	14.38	1.56	1.56	100	1.38	88	10	142		100000000000000000000000000000000000000	0000000
		medium to very coarse grained (pegmatitic), strong, indistinct to locally weak foliation at various angles to	14.38	15.50	1.12	1.12	100	0.94	84	9	112			3
		core axis, closely spaced, good quality.	15.50	15.87	0.37	0.37	100	0.35	95	2	123			333333
			15.87	17.42	1.55	1.55	100	1.24	80	9	155			2222
			17.42	18.95			100	1.45	95	6	219			h
			18.95	20.35			99	1.37	98	1 +	700			<u>u</u>
			20.35	21.93	1.58	1.58	100	1.52	96	3	395			
			21.93	23.46		1.53	100	1.40	92	6	219			HEER
			23.46	24.83		1.37	100	1.37	100	4	274			
			24.83	25.05	0.22	0.22	100	0.22	100	0	220			
					l						1			
				Total =	15.19	15.17		13.77		65				
				Average =	1.17		99.9		91	5	230			

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

For notes, see page 1	8)
-----------------------	----

Drill Hole: G-00	007	Geological	D	rill Run		Reco	very	RC)D	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run
Date: Oct.	2/88	Description ⁽³⁾	Depth (m - alor	ng core axis)	Length	Len	gth	Len	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
			From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)	000000000000000000000000000000000000000		
Dip:	45 deg.	3.86-22.88 Granite: white to whitish grey, medium grained to coarse grained, strong, moderately	3.86	4.56	0.70	0.70	100	0.70	100	1	350			- F
Bearing:	19 deg.	spaced jointing, excellent rock quality.	4.56	6.08	1.52	1.52	100	1.52	100	1	760			
Datum 140).19 m		6.08	7.66	1.58	1.58	100	1.58	100	4	316			
Depth: 28	3.94 m	22.88-23.39 Diabase: dark grey to green, very fine	7.66	9.15	1.49	1.49	100	1.49	100	1	745			8
		grained, slight foliation evident at 30 to 40 degrees to the core axis, strong, moderately spaced jointing,	9.15	10.72	1.57	1.57	100	1.57	100	2	523			P
		excellent rock quality.	10.72	12.23	1.51	1.51	100	1.51	100	0	1510			59
		23.39-28.94 Granite: as described above, good to	12.23	13.75	1.52	1.52	100	1.52	100	3	380			
		excellent rock quality.	13.75	15.25	1.50	1.50	100	1.50	100	1	750			
			15.25	16.80	1.55	1.55	100	1.55	100	2	517			
			16.80	18.34	1.54	1.54	100	1.54	100	3	385			
			18.34	19.85	1.51	1.51	100	1.51	100	1	755			[
			19.85	21.34	1.49	1.49	100	1.49	100	2	497			빌
			21.34	22.88	1.54	1.54	100	1.54	100	3	385			
			22.88	24.38	1.50	1.50	100	1.40	93	5	250			=
			24.38	25.91	1.53	1.53	100	1.44	94	4 +	306			
			25.91	27.38	1.47	1.47	100	1.38	94	8	163			
			27.38	28.94	1.56	1.28	82	1.28	82	2 +	427			
											[
				Total =	25.08	24.80		24.52		43				
				Average =	1.48		98.9		98	3	570			

Appendix A
Keeyask Generating Station
Stage IV Investigation Program - Axis GR-4
Bedrock Summary Log: Powerhouse Area

Drill Hole: (G-0008	Geological	D	rill Run		Reco	very	RO	QQ	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run	
Date: .	Jun, 6/91	Description ⁽³⁾	Depth (m - alor	ng core axis)	Length	Leng	gth	Len	igth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25	
			From	То	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)	201000000000000000000000000000000000000			
Dip:	45 deg.	13.06-19.75 Greywacke gneiss: dark grey to greenish grey with pink to light grey granite bands	13.11	14.40	1.29	1.29	100	1.29	100	3	323		100000000000000000000000000000000000000	55501	
Bearing:	N28E	throughout, fine grained, strong, distinct foliation at	14.40	15.73	1.33	1.33	100	1.23	92	7	166				
Datum	141.50 m	35 to 45 degrees to the core axis. Closely to	15.73	17.25	1.52	1.52	100	1.44	95	5	253			500000	
Depth:	58.01 m	moderately spaced jointing, excellent rock quality, low permeability.	17.25	18.53	1.28	1.10	86	0.69	54	9 +	110			300000	
		, ,	18.53	19.83	1.30	1.30	100	0.97	75	12	100			B	
		19.75-25.93 Granite: light pink, medium to coarse grained, strong, no foliation evident, hematitic	19.83	20.64	0.81	0.81	100	0.81	100	2	270				
		stained, upper contact is intact, irregular and sharp,	20.64	21.87	1.23	1.23	100	1.23	100	3	308				
		closely to moderately spaced jointing, excellent rock quality, low permeability.	21.87	23.49	1.62	1.56	96	1.38	85	7 +	195				
			23.49	24.93	1.44	1.44	100	1.33	92	4	288				
		25.93-35.08 Greywacke gneiss: as descripbed above.	24.93	26.39	1.46	1.43	98	1.28	88	8 +	159				
			26.39	27.88	1.49	1.49	100	1.44	97	6	213				
		35.08-40.66 Granite: as described above.	27.88	29.54	1.66	1.66	100	1.60	96	5	277				
		40.66-44.97 Greywacke gneiss: as described	29.54	30.93	1.39	1.39	100	1.31	94	6	199			18888B	
		above.	30.93	32.50	1.57	1.57	100	1.35	86	6	224				
		44.97-49.35 Granite: light grey, coarse grained,	32.50	34.08	1.58	1.58	100	1.58	100	5	263				
		strong, no foliation evident, hematite staining	34.08	35.55	1.47	1.40	95	1.07	73	6 +	200			2233	
		throughout, upper contact is irregular, intact and sharp, closely to moderately spaced jointing, good	35.55	35.89	0.34	0.34	100	0.25	74	2	113				
		to excellent rock quality, low permeability.	35.89	37.32	1.43	1.43	100	1.43	100	2	477				
		49.35-55.13 Greywacke gneiss: as described	37.32	38.84	1.52	1.52	100	1.52	100	5	253				
		above.	38.84	39.14	0.30	0.30	100	0.30	100	0	300				
		55.13-58.01 Granite: light grey, medium to coarse	39.14	40.52	1.38	1.38	100	1.29	93	3	345			⊞	
		grained, strong, no foliation evident, hematite	40.52	41.96	1.44	1.44	100	1.27	88	7	180				
		staining, possible containing garnet, upper contact is a joint, planar, rough, tight, black coating, minor	41.96	43.47	1.51	1.51	100	1.40	93	8	168				
		carbonate, trace iron sulphides, slickensides and at	43.47	45.00	1.53	1.53	100	1.24	81	10 +	139			8888	
		40 degrees to the core axis, moderately spaced jointing, excellent rock quality, low permeability	45.00	46.48	1.48	1.48	100	1.11	75	9	148				
		joining, excellent rook quality, for permeability	46.48	48.06	1.58	1.58	100	1.58	100	3	395				
			48.06	49.23	1.17	1.17	100	1.17	100	3	293				
			49.23	50.89	1.66	1.66	100	1.62	98	7	208				
			50.89	52.48	1.59	1.59	100	1.38	87	11	133				
			52.48	54.14	1.66	1.66	100	1.66	100	3	415				
			54.14	55.63	1.49	1.49	100	1.34	90	8	166				
			55.63	57.17	1.54	1.54	100	1.54	100	4	308			=	
			57.17	58.01	0.84	0.61	73	0.61	73	1 +	305		303030303030		
		1	1												
				Total =	44.90	44.33		40.71		180			1 1 1 1 1		
				Average =	1.36		98.7		91	5	248				

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

											Danes (0/)		laiata assaus
Drill Hole: G-0011	Geological	D	rill Run		Reco	very	RQI)	Jts	Average ⁽³⁾	Recovery (%) 0 25 50 75 100	RQD (%)	Joints per run 0 5 10 15 20 25
Date: Jun. 15, 91	Description ⁽³⁾	Depth (m - alor	g core axis)	Length	Len	gth	Leng	th	per	Spacing	I	0 25 50 75 100	
	0.04.40.07.0	From	То	(m)	(m)	(%)	. ,	(%)	run	per Jt. (mm)			
Dip: 45 deg.	0.94-43.87 Greywacke gneiss: medium to dark grey, fine grained, indistinct to strongly foliated at 30	0.94	2.01	1.07	1.07	100	0.52	49	6 +	153			
Bearing: S16W	to 45 degrees to the core axis, strong, moderately	2.01	2.44	0.43	0.43	100	0.43	100	1	215			
Datum 140.05 m	spaced jointing, excellent rock quality, with granitic stringers and intrusions.	2.44	3.76	1.32	1.30	98	1.21	92	7 +	163			
Depth: 55.44 m		3.76	4.63	0.87	0.83	95	0.62	71	3 +	208			
	43.87-55.44 Granite: light grey, coarse to medium grained, very strong, upper contact at 90 degrees,	4.63	5.14	0.51	0.51	100	0.51	100	0	510			=
Barge hole	close to moderately close jointing, good to excellent	5.14	6.84	1.70	1.70	100	1.67	98	4	340			
	rock quality.	6.84	8.06	1.22	1.22	100	1.17	96	5	203			■
		8.06	9.82	1.76	1.76	100	1.76	100	5	293			
		9.82	11.14	1.32	1.32	100	1.18	89	5	220		868888888888	
		11.14	12.80	1.66	1.66	100	1.46	88	8	184			
		12.80	14.04	1.24	1.09	88	1.00	81	2 +	363			388
		14.04	15.35	1.31	1.31	100	1.14	87	5	218		333333333333333	
		15.35	16.86	1.51	1.51	100	1.42	94	8	168			
		16.86	17.64	0.78	0.74	95	0.59	76	4 +	148			
		17.64 19.09	19.09 20.54	1.45 1.45	1.43 1.45	99 100	1.24 1.45	86 100	3 + 2	358 483			
		20.54	20.54	0.62	0.62	100	0.61	98	2	207			
		21.16	22.81	1.65	1.65	100	1.56	95	6	236			
		22.81	23.69	0.88	0.88	100	0.86	98	4	176			
		23.69	24.82	1.13	1.13	100	1.13	100	3	283			
		24.82	26.43	1.61	1.61	100	1.47	91	4	322			
		26.43	28.10	1.67	1.67	100	1.67	100	2	557			
		28.10	29.57	1.47	1.47	100	1.38	94	5	245			
		29.57	31.16	1.59	1.59	100	1.51	95	4	318			
		31.16	32.67	1.51	1.51	100	1.51	100	1	755			
		32.67	34.28	1.61	1.61	100	1.61	100	3	403			3
		34.28	35.75	1.47	1.47	100	1.47	100	2	490			
		35.75	37.32	1.57	1.57	100	1.55	99	6	224			2000
		37.32	38.83	1.51	1.51	100	1.43	95	7	189			3333
		38.83	40.38	1.55	1.55	100	1.35	87	10	141			2000000
		40.38	41.87	1.49	1.49	100	1.17	79	14 +	99			
		41.87	43.45	1.58	1.58	100	1.53	97	6	226		200000000000000000000000000000000000000	3335
		43.45	44.98	1.53	1.53	100	1.19	78	12	118			20000000
		44.98	46.46	1.48	1.48	100	1.14	77	13	106			estatisticiani
		46.46	48.04	1.58	1.58	100	1.35	85	9	158		53555555555555555555555555555555555555	100000
		48.04	49.53	1.49	1.49	100	1.23	83	8 +	166			100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		49.53	50.91	1.38	1.38	100	1.37	99	4	276			
		50.91	52.31	1.40	1.40	100	1.38	99	4	280			
		52.31	53.96	1.65	1.65	100	1.65	100	2	550	000000000000000000		H
	I	53.96	55.44	1.48	1.44	97	1.42	96	2 +	480		<u> </u>	
		ı	Total =	54.50	54 10	l	49.91	J	201	I			1
			Average =	1.36	J4.19	99.4	78.81	92	201	270			
			Average -	1.50		<i>33.</i> 4		52	3	210			

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

Drill Hole: G-0012 Geological	Di	rill Run	I	Reco	very	RQ	D	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run
Date: Jun. 18, 91 Description ⁽³⁾	Depth (m - alon	g core axis)	Length	Leng	gth	Leng	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
	From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)	355353555555555555555555555555555555555	888888888888888	h
Dip: 45 deg. 1.61-14.89 Greywacke gneiss: dark grey, with light	1.61	2.37	0.76	0.76	100	0.62	82	2 +	253		200000000000000000000000000000000000000	
Bearing: S85W grey granite, fine grained, strong, distinct foliation at 45 to 60 degrees to the core axis, moderately	2.37	4.00	1.63	1.63	100	1.63	100	2	543			
Datum 139.95 m spaced jointing, excellent rock quality, medium	4.00	5.42	1.42	1.28	90	1.14	80	1 +	640			
Depth: 55.80 m	5.42	6.96	1.54	1.54	100	1.36	88	2 +	513			
14.89-44.06 Granite: medium grey, medium to	6.96	8.45	1.49	1.49	100	1.49	100	2	497			<u> </u>
Barge hole coarse grained, strong, no foliation evident, moderately to widely spaced jointing, excellent rock	8.45	9.99	1.54	1.54	100	1.54	100	4	308			
quality, low permeability, upper contact is intact,	9.99	11.20	1.21	1.21	100	1.21	100	3	303			3
planar, sharp and at 45 degrees to the core axis.	11.20	12.61	1.41	1.41	100	1.41	100	1	705			
44.06-55.80 Greywacke gneiss: as described	12.61	14.09	1.48	1.48	100	1.48	100	2	493			
above, upper contact is intact, planar, sharp and at	14.09	15.62	1.53	1.53	100	1.52	99	3	383			
55 degrees to the core axis.	15.62	17.18	1.56	1.56	100	1.56	100	3	390			⊞
	17.18	18.69	1.51	1.51	100	1.46	97	2	503			
	18.69	20.28	1.59	1.59	100	1.57	99	2	530			
	20.28	21.78	1.50	1.50	100	1.50	100	4	300			=
	21.78	23.33	1.55	1.55	100	1.55	100	0	1550			
	23.33	24.91	1.58	1.58	100	1.58	100	2	527	300000000000000000000000000000000000000		
	24.91	25.63	0.72	0.72	100	0.72	100	0	720			
	25.63	26.58	0.72	0.95	100	0.72	100	0	950			
	26.58	28.11	1.53	1.53	100	1.50	98	4 +	306			
	28.11	29.65	1.54	1.54	100	1.54	100	2	513			
	29.65	31.03	1.38	1.38	100	1.29	93	7	173			
	31.03	32.58	1.55	1.55	100	1.32	85	10	141			38388
	32.58	33.66	1.08	1.08	100	1.07	99	3	270			
	33.66	34.66	1.00	1.00	100	0.97	97	3	250			
	34.66	35.87	1.21	1.21	100	1.21	100	3	303			■
	35.87	37.26	1.39	1.30	94	1.30	94	2 +	433			
	37.26	38.55	1.29	1.29	100	1.29	100	1	645			
	38.55	40.10	1.55	1.55	100	1.52	98	4	310			13
	40.10	41.67	1.57	1.57	100	1.56	99	1	785			
	41.67	43.19	1.52	1.52	100	1.52	100	2	507			
	43.19	44.61	1.42	1.42	100	1.42	100	2	473			
	44.61	46.28	1.67	1.67	100	1.60	96	2	557			
	46.28	47.87	1.59	1.59	100	1.59	100	3	398			■
	47.87	49.37	1.50	1.50	100	1.45	97	5	250			
	49.37	51.03	1.66	1.66	100	1.58	95	5	277			33E
	51.03	51.31	0.28	0.28	100	0.28	100	0	280			
	51.31	52.70	1.39	1.39	100	1.39	100	3 +	348			■
	52.70	54.23	1.53	1.53	100	1.53	100	1	765			
	54.23	55.80	1.57	1.57	100	1.10	70	5 ++	262	3989 388 388 388 388 388 388 388 388 388	E855855555555	
'	·											
		Total =	54.19	53.96		52.32	•	103	•	•	•	

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

Drill Hole: G-0013	Geological	D	rill Run	ĺ	Reco	very	RQ	D	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run
Date: Jun. 21, 91	Description ⁽³⁾	Depth (m - alor	ng core axis)	Length	Len	gth	Len	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
		From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)		35355555555	
Dip: 60 deg.	1.73-19.44 Granite: medium grey, medium to coarse grained, strong, no foliation evident, widely	1.73	2.38	0.65	0.65	100	0.43	66	0 +	650		100000000000000000000000000000000000000	53
Bearing: 270 deg.	spaced jointing, excellent rock quality, low	2.38	3.88	1.50	1.50	100	1.12	75	4 +	300			1 1 1
Datum 140.00 m	permeability, hematite staining throughout, minor	3.88	5.33	1.45	1.45	100	1.45	100	0	1450			
Depth: 51.05 m	biotite to chlorite alteration throughout.	5.33	6.69	1.36	1.36	100	1.36	100	0	1360			
	19.44-28.09 Greywacke gneiss: dark grey, medium	6.69	8.35	1.66	1.66	100	1.66	100	0	1660			
Barge hole	to coarse grained, strong, widely spaced jointing, excellent rock quality, low permeability, upper	8.35	9.86	1.51	1.51	100	1.51	100	0	1510			
	contact is intact, irregular and gradational.	9.86	11.46	1.60	1.60	100	1.60	100	2	533			
	28.09-40.86 Granite: light pink, medium to coarse	11.46	12.93	1.47	1.47	100	1.47	100	1	735			
	grained, strong, no foliation evident, widely spaced	12.93	14.49	1.56	1.56	100	1.56	100	1	780			
	jointing, excellent rock quality, low permeability, upper contact is gradational.	14.49	16.05	1.56	1.56	100	1.56	100	2	520			
		16.05	17.49	1.44	1.44	100	1.44	100	0	1440			
	40.86-44.87 Greywacke gneiss: dark grey with light grey granite, fine to medium grained, strong, no	17.49	18.97	1.48	1.48	100	1.42	96	0 +	1480			
	foliation evident, widely spaced jointing, excellent	18.97	20.54	1.57	1.57	100	1.51	96	4	314			
	rock quality, low permeability, gneissic texture is not		21.98	1.44	1.44	100	1.44	100	3	360			
	apparent from core surface but inspection of machine break surfaces shows a well developed	21.98	23.60	1.62	1.62	100	1.62	100	1	810			
	gneissic texture, upper contact is intact, planar,	23.60	25.02	1.42	1.42	100	1.42	100	2	473		30333333333333	
	sharp and at 75 degrees to the core axis.	25.02	26.65	1.63	1.63	100	1.54	94	4	326			
	44.87-51.73 Granite: light grey, coarse grained,	26.65	28.07	1.42	1.42	100	1.42	100	4	284			
	strong, no foliation evident, widely spaced jointing, excellent rock quality, upper contact is intact, planar,	28.07	28.70	0.63	0.63	100	0.63	100	4	126			■
	sharp and at 55 degrees to the core axis.	28.70	29.83	1.13	1.13	100	1.02	90	2 +	377			3
		29.83	31.23	1.40	1.40	100	1.40	100	0	1400			
		31.23	32.78	1.55	1.55	100	1.55	100	0	1550			
		32.78	34.36	1.58	1.58	100	1.56	99	2	527			
		34.36	35.91	1.55	1.55	100	1.49	96	3	388			
		35.91	37.48	1.57	1.57	100	1.57	100	1	785			
		37.48	38.17	0.69	0.69	100	0.62	90	2	230			
		38.17	38.89	0.72	0.72	100	0.72	100	4	144			
		38.89	40.51	1.62	1.62	100	1.62	100	1	810		0.000.000.000.000.000	
		40.51	42.01	1.50	1.50	100	1.50	100	1	750			
		42.01	43.58	1.57	1.57	100	1.57	100	1	785			<u> </u>
		43.58	45.05	1.47	1.47	100	1.47	100	2	490		0.000.000.000.000.000	ñ
		45.05	45.47	0.42	0.42	100	0.36	86	2	140			<u> </u>
		45.47	46.79	1.32	1.32	100	1.32	100	1	660			ñ
		46.79	48.13	1.34	1.34	100	1.34	100	1	670			<u> </u>
		48.13	49.59	1.46	1.46	100	1.46	100	0	1460			
		49.59	49.59 51.05	1.46		90	1.46	90	0	1310			
	I	49.59	51.05	1.40	1.31	90	1.31	90	U	1310		[
		I	Total =	49.32	40 17	J	48.04	l	55	1			1 1 1 1 1 1 1
				1.37	49.17	99.7	40.04	97	55 2	881			
			Average =	1.37		99.7		97	2	. 001			

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

Drill Hole:	G-0014	Geological		rill Run		Reco	very	RC)D	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run
Date:	Jun. 25, 91	Description ⁽³⁾	Depth (m - aloi	ng core axis)	Length	Len	gth	Len	gth	per	Spacing	0 25 50 75 100 0	0 25 50 75 100	0 5 10 15 20 25
			From	То	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)			
Dip:	60 deg.	4.03-12.82 Granite: light to medium grey, medium to coarse grained, strong, no foliation evident,	4.03	4.73	0.70	0.70	100	0.70	100	0	700			3
Bearing:	S26W	widely spaced jointing, good to excellent rock	4.73	6.31	1.58	1.58	100	1.58	100	2	527		0.000.000.000.000.000	5
Datum	140.11 m	quality, low permeability.	6.31	7.89	1.58	1.58	100	1.54	97	3 +	395	98988888888888888888888		
Depth:	46.10 m	12.82-33.31 Greywacke gneiss: dark grey with light	7.89	8.91	1.02	1.02	100	1.02	100	2	340			
		grey granite bands, fine grained, strong, distinct foliation at 25 to 35 degrees to the core axis, widely	8.91	10.44	1.53	1.53	100	1.40	92	5 +	255	98988888888888888888888	555	3
Barge hole	Э	to moderately spaced jointing, good to excellent	10.44	11.20	0.76	0.76	100	0.16	21	2 ++	253		55555 S	
		rock quality, low permeability, upper contact is intact	11.20	12.68	1.48	1.48	100	1.48	100	1	740		22222222222222222222	
		sharp and irregular.	12.68	14.00	1.32	1.32	100	1.32	100	1	660			
		33.31-37.41Granite: light grey, medium to coarse	14.00	15.50	1.50	1.50	100	1.48	99	2 +	500		******************	13
		grained, strong, no foliation evident, widely spaced jointing, excellent rock quality, upper contact is	15.50	17.15	1.65	1.65	100	1.65	100	0	1650			
		intact, planar, sharp and at 50 degrees to the core	17.15	18.63	1.48	1.48	100	1.00	68	2 +	493			3 3
		axis.	18.63	20.14	1.51	1.51	100	1.51	100	3	378			23
		37.41-46.10 Greywacke gneiss: dark grey, fine	20.14	21.66	1.52	1.52	100	1.46	96	7 +	190			232323 200000
		grained, strong, distinct foliation at 20 to 45 degrees to the core axis, moderately to widely spaced	21.66	23.15	1.49	1.49	100	1.13	76	7 +	186	8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8		3333
		jointing, excellent rock quality, low permeability,	23.15	24.69	1.54	1.54	100	1.54	100	4	308			
		upper contact is a joint, planar, rough, tight, carbonate coated and at 30 degrees to the core	24.69	26.25	1.56	1.56	100	1.49	96	6	223			
		axis.	26.25	27.76	1.51	1.51	100	1.51	100	3	378			
			27.76	29.22	1.46	1.46	100	0.87	60	7 +	183			38888
			29.22	30.71	1.49	1.49	100	0.13	9	5 ++	248			
			30.71	31.92	1.21	1.21	100	0.39	32	2 ++	403			3
			31.92	33.47	1.55	1.55	100	0.80	52	4 ++	310			
			33.47	35.07	1.60	1.60	100	1.60	100	1	800			
			35.07	35.58	0.51	0.51	100	0.49	96	3	128			
			35.58	37.08	1.50	1.50	100	1.42	95	4	300			
			37.08	38.50	1.42	1.42	100	1.29	91	7	178			
			38.50	40.00	1.50	1.50	100	1.43	95	5	250			
			40.00	41.55	1.55	1.55	100	1.45	94	4	310		385500000000000000000000000000000000000	33
			41.55	43.05	1.50	1.50	100	1.50	100	1	750			
			43.05	44.60	1.55	1.55	100	1.46	94	4	310			3
			44.60	46.10	1.50	1.42	95	1.42	95	1 +	710			
			•	Total =	42.07	41.99		36.22		98				
				Average =	1.40		99.8		86	3	425			

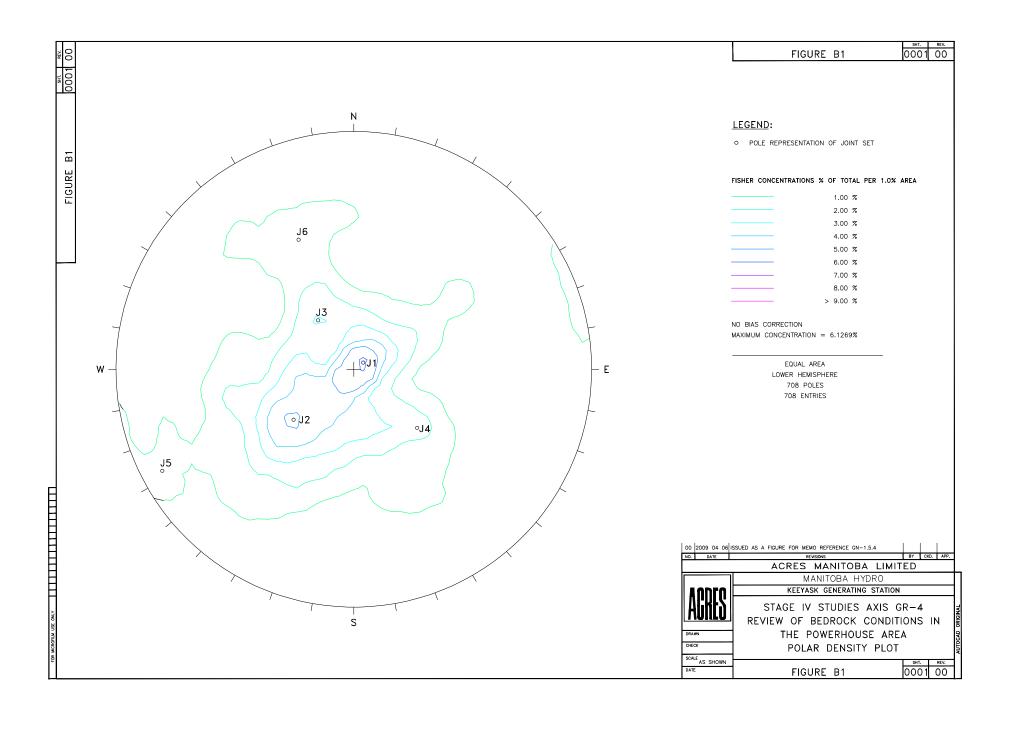
Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area

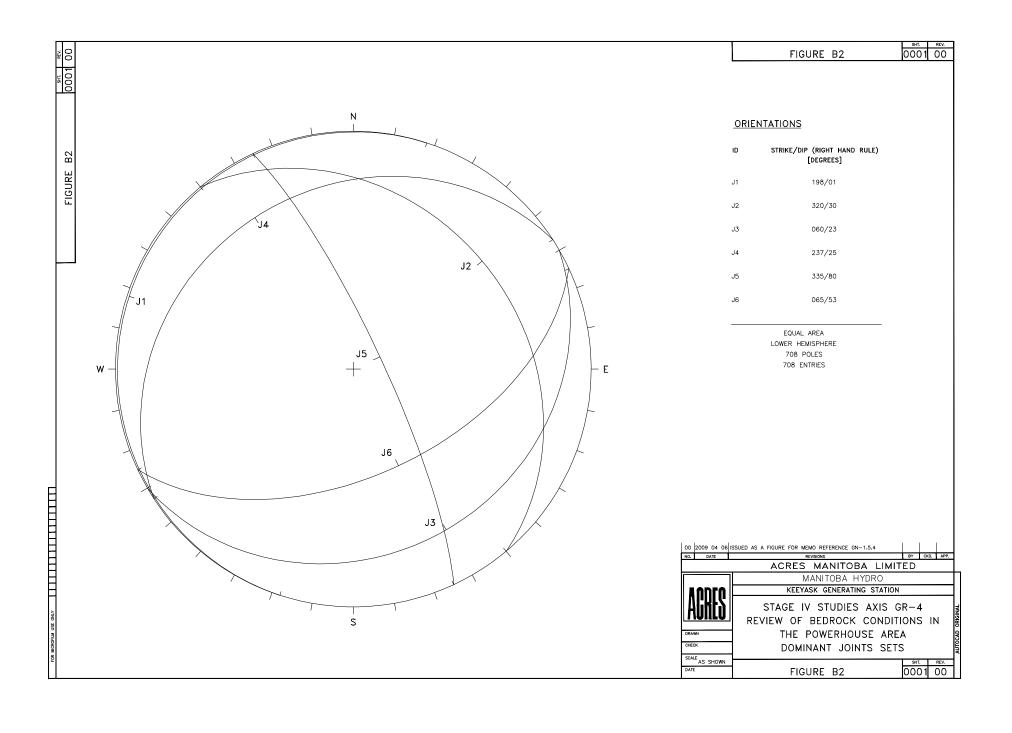
Drill Hole: G-0015	Geological	D	rill Run		Reco	very	RQ	D	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run
Date: Jun. 27, 91	Description ⁽³⁾	Depth (m - alor	ng core axis)	Length	Len	gth	Len	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
		From	То	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)	50.000.000.000.000	2522322322222	5555
Dip: 60 deg.	432-46.66 Greywacke gneiss: dark grey to black with light to medium grey granite, fine grained,	4.32	6.15	1.83	1.59	87	1.26	69	7 +	199			
Bearing: S82W	strong, indistinct to distinct foliation at 30 to 40	6.15	7.81	1.66	1.55	93	1.51	91	4 +	310		000000000000000000000000000000000000000	
Datum 139.81 m	degrees to the core axis, closely to moderately spaced jointing, good to excellent rock quality, low	7.81	8.08	0.27	0.27	100	0.27	100	0	270			38
Depth: 46.66 m	permeability.	8.08	9.50	1.42	1.42	100	1.39	98	4	284		0.0000000000000000000000000000000000000	555
		9.50	10.85	1.35	1.35	100	1.29	96	6	193			
Barge hole		10.85	12.31	1.46	1.46	100	1.46	100	5	243			333
		12.31	13.76	1.45	1.38	95	1.19	82	7 +	173		200000000000000000000000000000000000000	
		13.76	15.21	1.45	1.45	100	1.38	95	5	242			322
		15.21	16.75	1.54	1.54	100	1.32	86	8	171		0.0000000000000000000000000000000000000	13
		16.75	18.15	1.40	1.40	100	1.40	100	2	467	200000000000000000000000000000000000000		
		18.15	19.61	1.46	1.46	100	1.42	97	2	487		0.000.000.000.000	5555
		19.61	21.30	1.69	1.69	100	1.12	66	7 +	211		202000000000000000000000000000000000000	333
		21.30	22.50	1.20	1.20	100	1.16	97	6	171			333
		22.50	24.01	1.51	1.51	100	1.51	100	5	252			
		24.01	25.57	1.56	1.56	100	1.48	95	8	173			33333
		25.57	26.55	0.98	0.98	100	0.85	87	8	109		200000000000000000000000000000000000000	33333
		26.55	28.04	1.49	1.49	100	0.90	60	12	115		000000000000000000000000000000000000000	2222
		28.04	28.64	0.60	0.60	100	0.49	82	7 +	75			
		28.64	30.15	1.51	1.51	100	1.46	97	4	302			
		30.15	31.60	1.45	1.45	100	1.29	89	8	161			33333
		31.60	33.15	1.55	1.55	100	1.55	100	5	258			333
		33.15	34.60	1.45	1.45	100	1.45	100	0	1450			
		34.60	36.00	1.40	1.40	100	1.35	96	5 +	233			##
		36.00	37.54	1.54	1.54	100	1.32	86	4 +	308			##
		37.54	39.04	1.50	1.50	100	1.39	93	4 +	300			
		39.04	40.57	1.53	1.53	100	1.30	85	10 +	139			
		40.57	42.19	1.62	1.62	100	1.62	100	5	270			=
		42.19	42.33	0.14	0.14	100	0.14	100	0	140			
		42.33	43.85	1.52	1.52	100	1.46	96	7	190			
		43.85	45.09	1.24	1.24	100	1.24	100	3	310			
		45.09	46.66	1.57	1.50	96	1.48	94	4 +	300			
			Total =	42.34	41.85		38.45		162				
			Average =	1.37		98.8		91	5	260			

Appendix A
Keeyask Generating Station
Stage IV Investigation Program - Axis GR-4
Bedrock Summary Log: Powerhouse Area

Drill Hole: G-0016	Geological		rill Run		Reco	very	RC	(D	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run
Date: Jun. 28, 9	Description ⁽³⁾	Depth (m - alo	ng core axis)	Length	Len	gth	Len	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
		From	То	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)			
Dip: 60 de	 4.73-39.65 Granite: light grey to light brownish grey, medium to coarse grained, strong, no foliation 	4.73	5.35	0.62	0.62	100	0.62	100	2	207			H
Bearing: N13W	evident, moderately spaced jointing, good to	5.35	5.93	0.58	0.58	100	0.58	100	2	193			
Datum 139.76 m	excellent rock quality, medium permeability, occasional mafic clot.	5.93	7.50	1.57	1.57	100	1.36	87	11	131		80000000000000	30000000
Depth: 42.36 m		7.50	8.99	1.49	1.23	83	1.03	69	12 +	95			
	39.65-42.36 Greywacke gneiss: dark grey to medium grey, fine to medium grained, occasionally	8.99	10.44	1.45	1.38	95	1.15	79	9 +	138			
Barge hole	coarse grained, strong, distinct foliation at 20	10.44	10.83	0.39	0.39	100	0.39	100	2	130			3333
	degrees to the core axis, moderately jointed, good rock quality, low permeability, contains some coars	10.83	12.37	1.54	1.54	100	1.39	90	8	171			55555
	quartz/feldspar grains, rounded and rotated, some	12.37	13.88	1.51	1.51	100	1.26	83	11	126			
	angular fragments, upper contact is a joint, tight, sharp and at 20 degrees to the core axis.	13.88	15.40	1.52	1.52	100	1.46	96	7	190	3565656565656565		
	onarp and at 20 dogress to the core axio.	15.40	16.84	1.44	1.44	100	1.44	100	2	480		50.00.00.00.00.00.00.00.0	3 33
		16.84	18.13	1.29	1.29	100	1.29	100	3	323			3333
		18.13	19.70	1.57	1.57	100	1.39	89	8	174			
		19.70	21.16	1.46	1.46	100	1.44	99	3	365	300000000000000000000000000000000000000		
		21.16	22.74	1.58		100	1.53	97	3	395			
		22.74	24.13	1.39	1.39	100	1.39	100	1	695	300000000000000000000000000000000000000		
		24.13	25.62	1.49	1.49	100	1.49	100	3	373			≅
		25.62	27.07	1.45		100	1.40	97	2	483			
		27.07	28.69	1.62		98	1.49	92	4 +	316			##
		28.69	30.03	1.34	1.34	100	1.34	100	3	335		888888888888	33333
		30.03	31.63	1.60		100	1.38	86	8	178			
		31.63	33.08	1.45	1.45	100	1.45	100	2	483			
		33.08 34.11	34.11 35.63	1.03 1.52	1.03 1.52	100 100	0.84 1.47	82 97	7 6	129 217		35 35 35 35 35 35 35 35 35	
		35.63	37.15	1.52		100	1.47	98	5	253			
		35.63	37.15 37.93	0.78		100	0.74	98 95	3	253 195			##
		37.15	39.40	1.47	1.47	100	1.29	88	ა 6	210		000000000000000000000000000000000000000	
		39.40	40.93	1.53	1.53	100	1.48	97	7	191			
		40.93	40.93	1.53		94	1.40	82	7 6 +	193		000000000000000000000000000000000000000	
	I	1 40.93	42.30	1.43	1.33	94	1.17	02	0 +	193			
		l	Total =	37 63	37.18	ı	34.75	l	146	I			1 1 1 1 1 1 1
			Average =	1.34	57.10	98.8	04.70	92	5	256			
			. worugo -	1.54		00.0		02	3	200			

Appendix A Keeyask Generating Station Stage IV Investigation Program - Axis GR-4 Bedrock Summary Log: Powerhouse Area


(For notes, see page 18)


Drill Hole: G-0204	Geological	0	rill Run		Reco	very	RG)D	Jts	Average ⁽³⁾	Recovery (%)	RQD (%)	Joints per run
Date: Sept. 30/88	Description ⁽³⁾	Depth (m - alo	ng core axis)	Length	Len	gth	Len	gth	per	Spacing	0 25 50 75 100	0 25 50 75 100	0 5 10 15 20 25
		From	To	(m)	(m)	(%)	(m)	(%)	run	per Jt. (mm)			h
Dip: 45 deg.	4.73-39.65 Granite: light grey to light brownish grey, medium to coarse grained, strong, no foliation	4.72	4.88	0.16	0.16	100	0.07	44	1	80			0
Bearing: 230 deg.	evident, moderately spaced jointing, good to	4.88	6.40	1.52	1.52	100	1.24	82	9 +	152			3
Datum 141.96 m	excellent rock quality, medium permeability, occasional mafic clot.	6.40	7.92	1.52	1.52	100	1.52	100	2	507			
Depth: 30.79 m	occasional mane ciot.	7.92	9.44	1.52	1.52	100	1.39	91	6	217			338
	39.65-42.36 Greywacke gneiss: dark grey to	9.44	10.97	1.53	1.53	100	1.38	90	5 +	255	201000000000000000000000000000000000000		##
	medium grey, fine to medium grained, occasionally coarse grained, strong, distinct foliation at 20	10.97	12.49	1.52	1.52	100	1.44	95	4 +	304			33
	degrees to the core axis, moderately jointed, good rock quality, low permeability, contains some coarse	12.49	14.00	1.51	1.51	100	1.51	100	1	755			
	quartz/feldspar grains, rounded and rotated, some	14.00	15.52	1.52	1.52	100	1.43	94	6	217			3333
	angular fragments, upper contact is a joint, tight,	15.52	17.05	1.53	1.53	100	1.45	95	8	170			3333
	sharp and at 20 degrees to the core axis.	17.05	18.58	1.53	1.53	100	1.45	95	2	510			
		18.58	20.11	1.53	1.53	100	1.44	94	2	510			
		20.11	21.62	1.51	1.51	100	1.31	87	6 +	216			
		21.62	23.14	1.52	1.52	100	1.40	92	5	253			
		23.14	24.66	1.52	1.52	100	1.08	71	11 +	127			
		24.66	26.20	1.54	1.54	100	1.50	97	5	257			8
		26.20	27.71	1.51	1.51	100	1.51	100	3	378			
		27.71	29.27	1.56	1.56	100	1.52	97	7	195			
		29.27	30.79	1.52	1.40	92	1.31	86	4 +	280			
			Total =	26.07	25.95		23.95		87				
			Average =	1.45		99.5		92	5	296			

Notes:

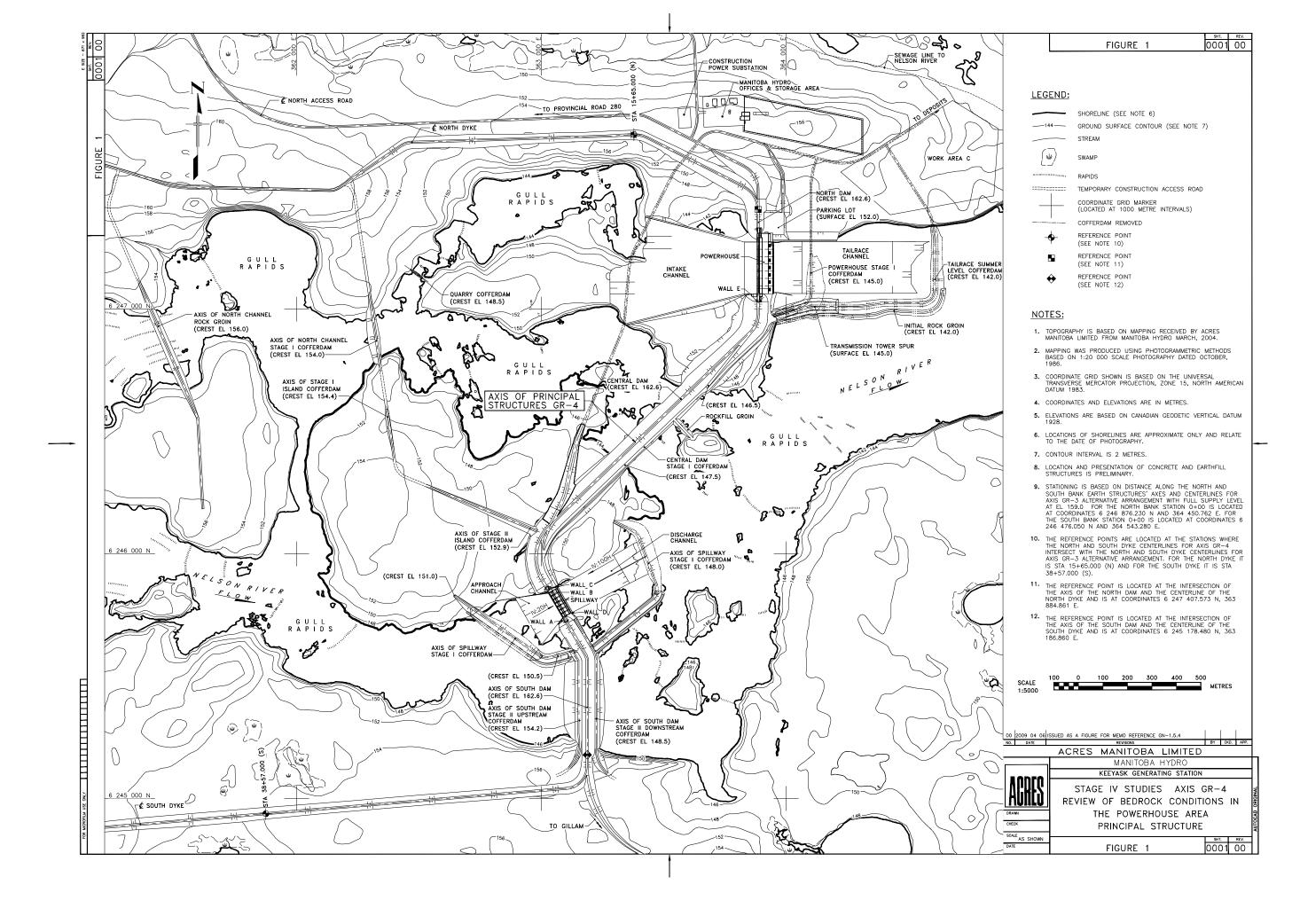
- (1) Chart Depths are approximate.
- (2) Elevation is approximate.
- (3) Refer to geological logs for a complete description
- (4) For barge holes, elevation noted is the riverbed elevation.
- Defines the minimum discontinuities counted in a core run, where missing or broken core is present.
- ++ defines a core run with discontinuities too numerous to count, or the entire core run is broken or lost.

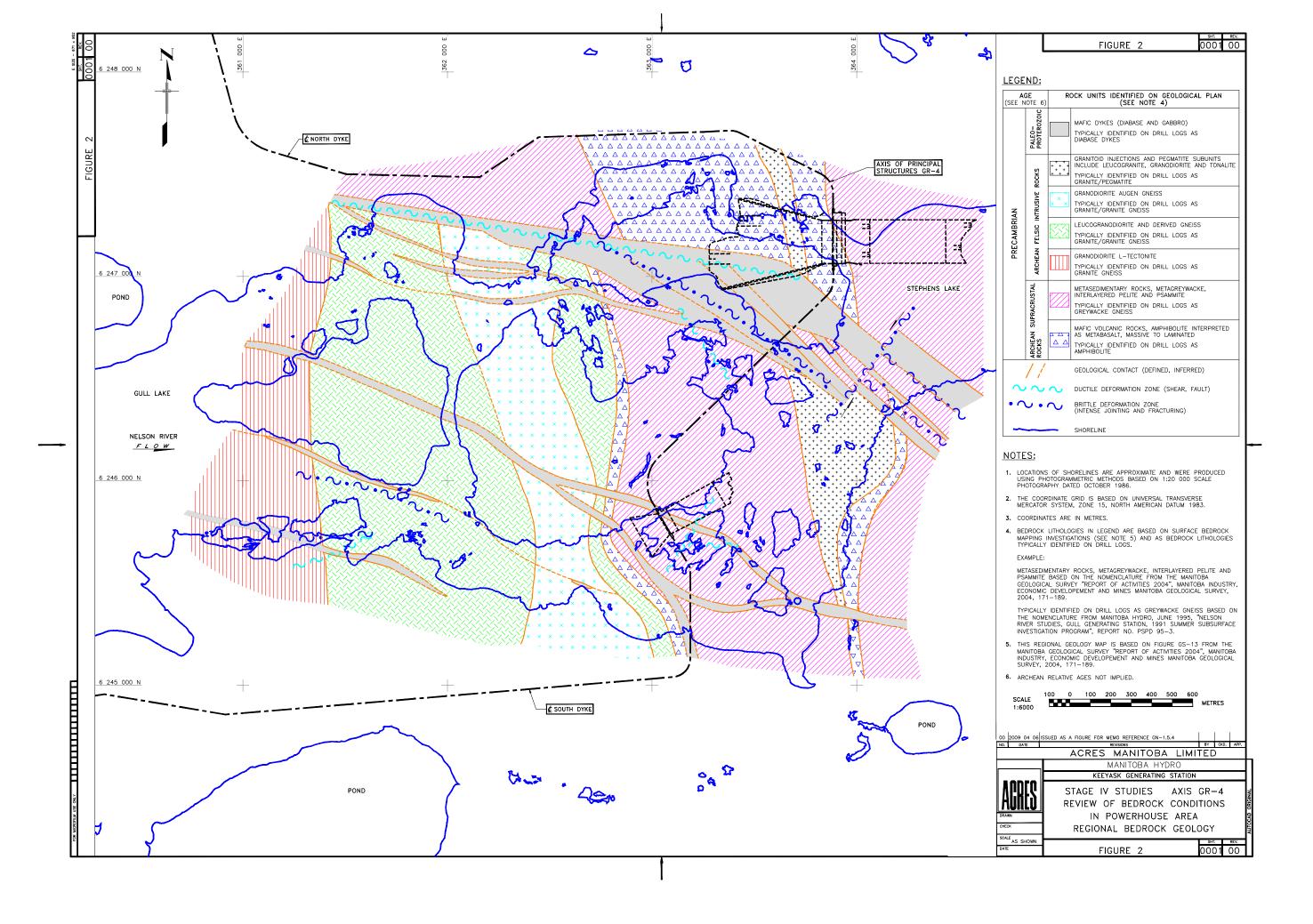
Appendix B

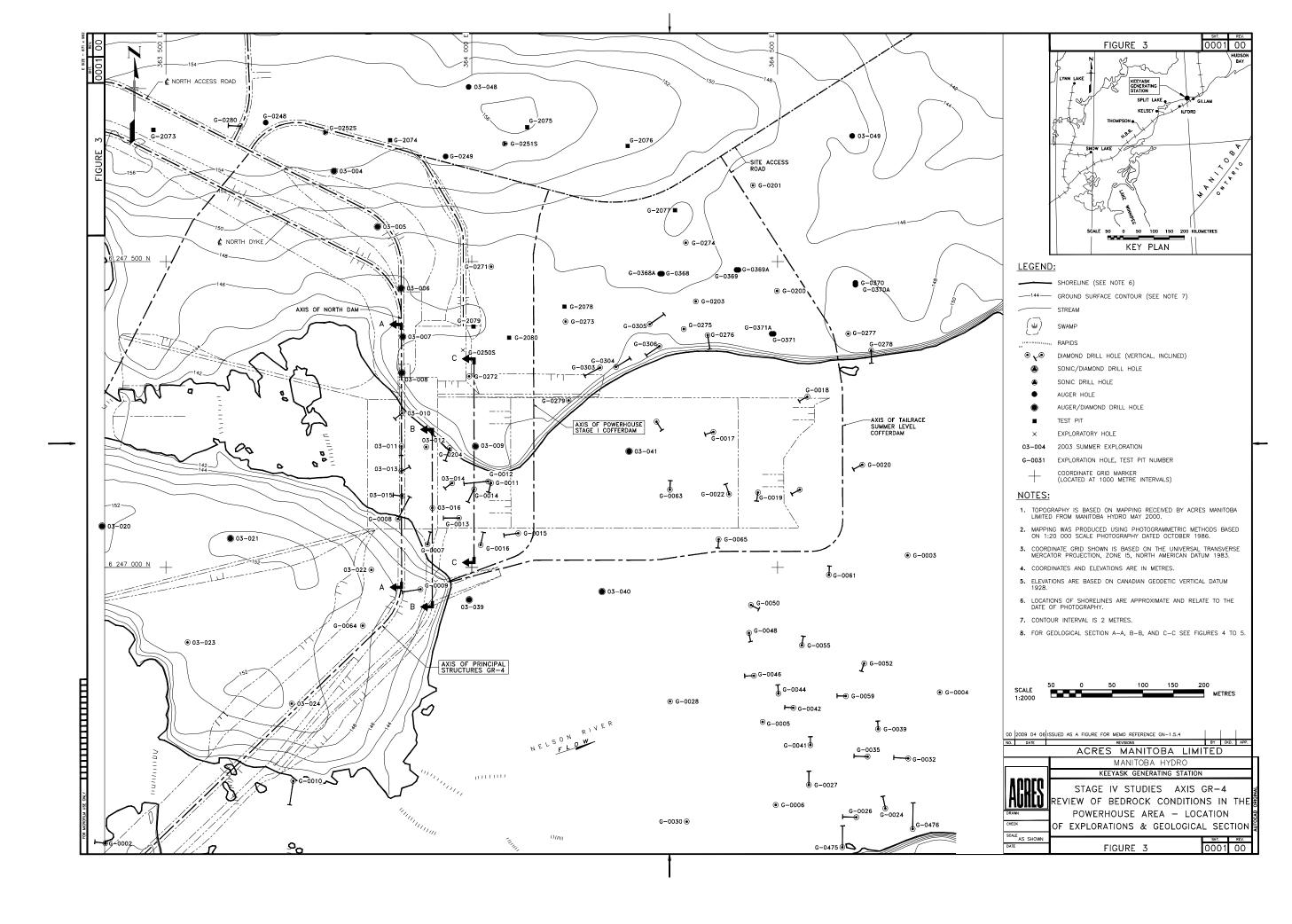
Appendix C

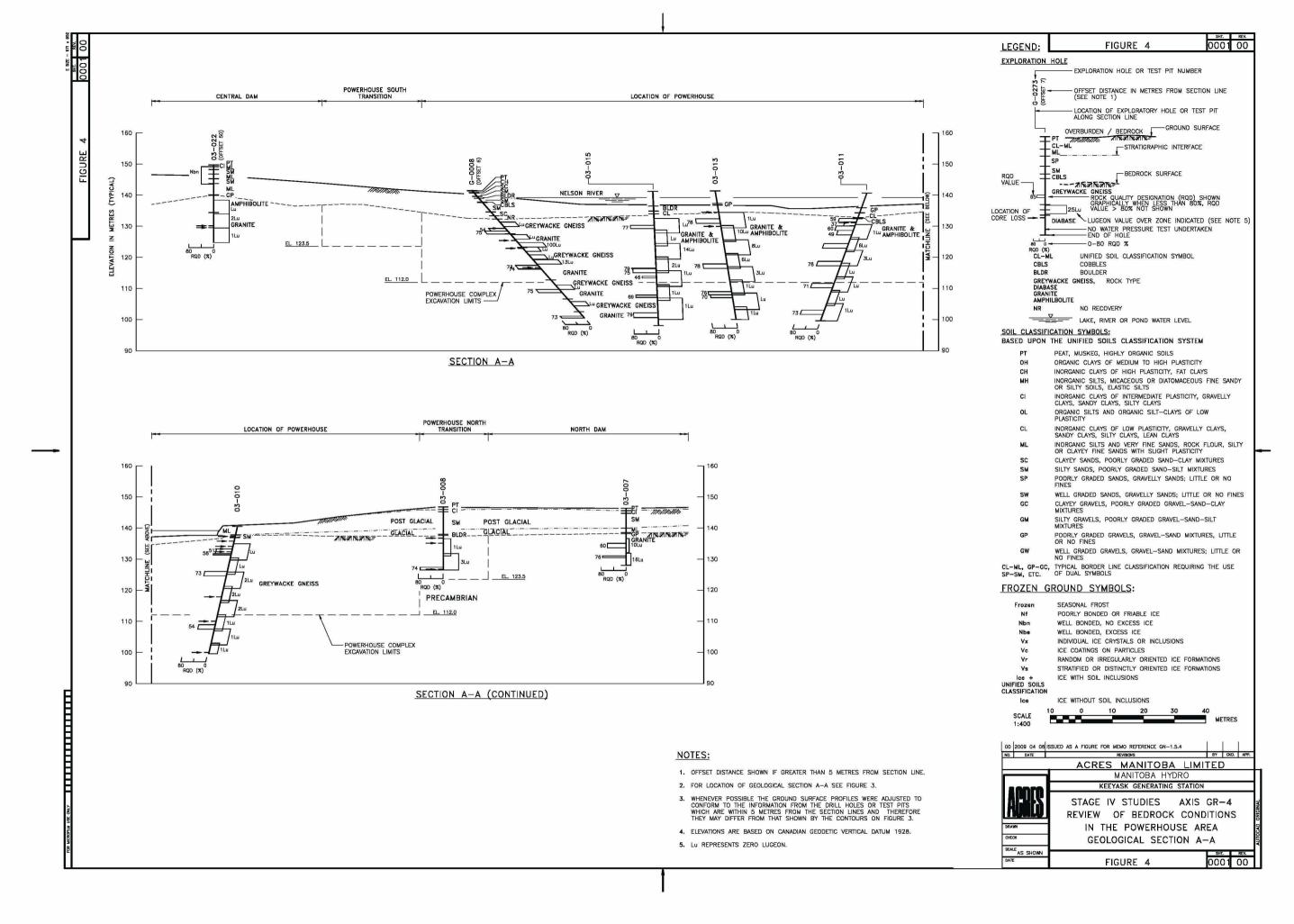
Appendix C Keeyask Generating Station Stage IV Studies, Axis GR-4 Rock Mass Properties

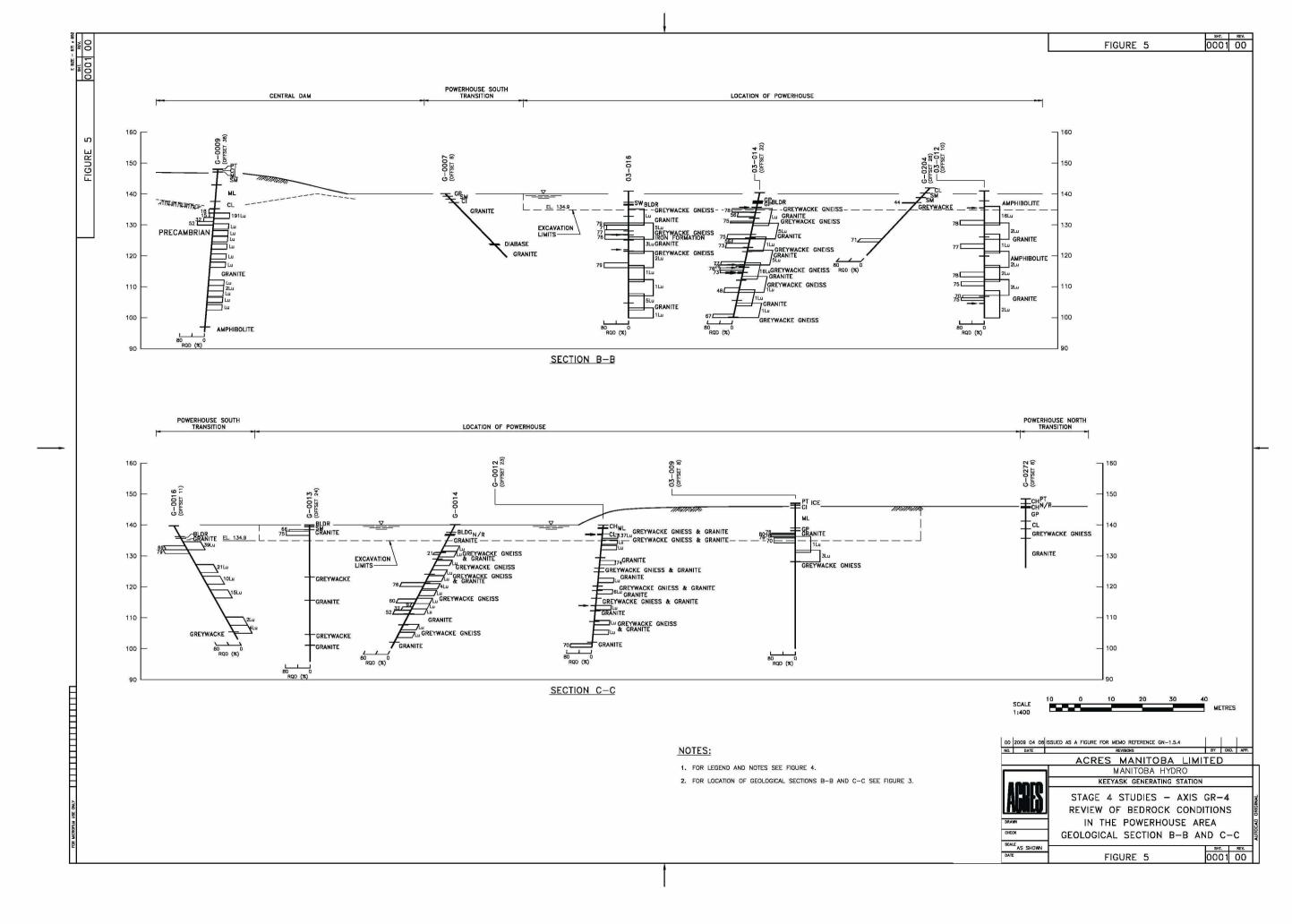
Values of the constant m_i for intact rock, by rock group. Note that values in parenthesis are estimates. (Hoek E. Practical Rock Engineering, 2006, www.rocscience.com)

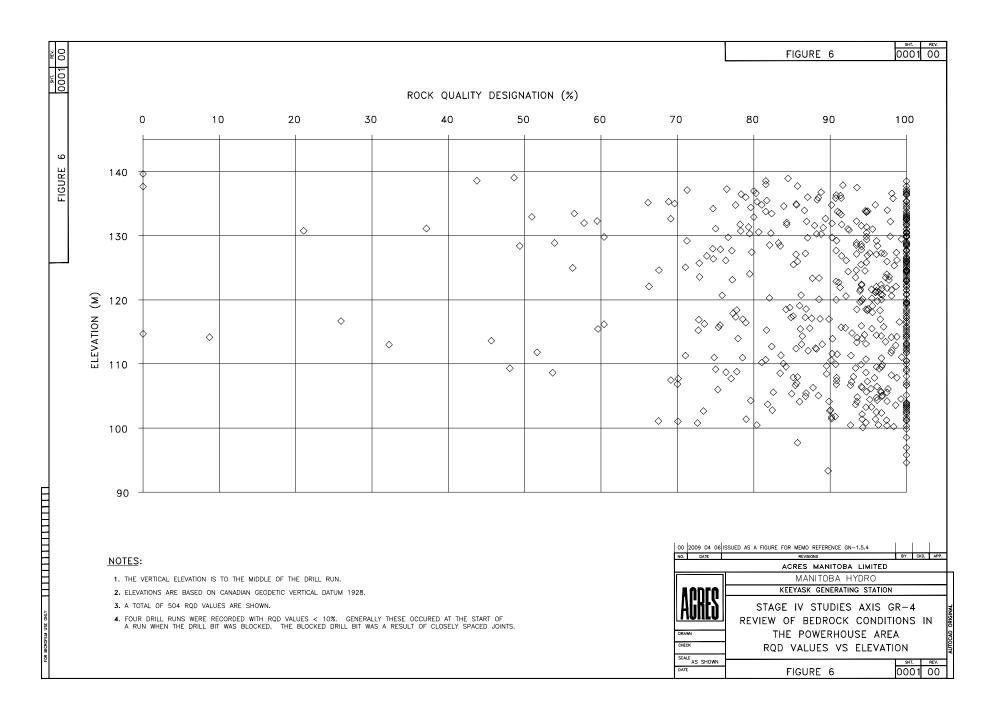

Rock	Class	Group		Texture	2	
Type			Coarse	Medium	Fine	Very Fine
tary	Clastic		Conglomerates ⁽¹⁾ (21 = 3) Breccias (19 = 5)	Sandstones 17 = 4	Siltstones 7 = 2 Greywackes (18 = 3)	Claystones 4 = 2 Shales (6 = 2) Maris (7 = 2)
Sedimentary	N. Cl. C	Carbonates	Crystalline Limestone (12 = 3)	Sparitic Limestones $(10 = 2)$	Micritic Limestones (9 = 2)	Dolomites $(9 = 3)$
	Non-Clastic	Evaporites		Gypsum 8 = 2	Anhydrite $12 = 2$	
		Organic		0 – 2	12 – 2	<i>Chalk</i> 7 = 2
Метатогрћіс	Non Foliated		Marble 9 = 3	Hornfels $(19 = 4)$ Metasandstone $(19 = 3)$	Quartzites 20 = 3	
letama	Slightly Foliated	,	<i>Migmatite</i> (29 = 3)	Amphibolites 26 = 6		
V	Foliated ⁽²⁾		Gneiss 28 = 5	Schists 12 = 3	Phyllites $(7 = 3)$	Slates 7 = 4
		Light		Diorite 25 = 5 diorite		
snc	Plutonic	Dark	Gabbro 27 = 3 No	= 30		
Igneous	Hypabyssal	1	Porphyries (20 = 5)		<i>Diabase</i> (15 = 5)	<i>Peridotite</i> (25 = 5)
	Volcanic	Lava		Rhyolite $(25 = 5)$ Andesite $25 = 5$	Dacite $(25 = 3)$ Basalt $(25 = 5)$	Obsidian $(19 = 3)$
		Pyroclastic	$Agglomerate \\ (19 = 3)$	Breccia (19 = 5)		

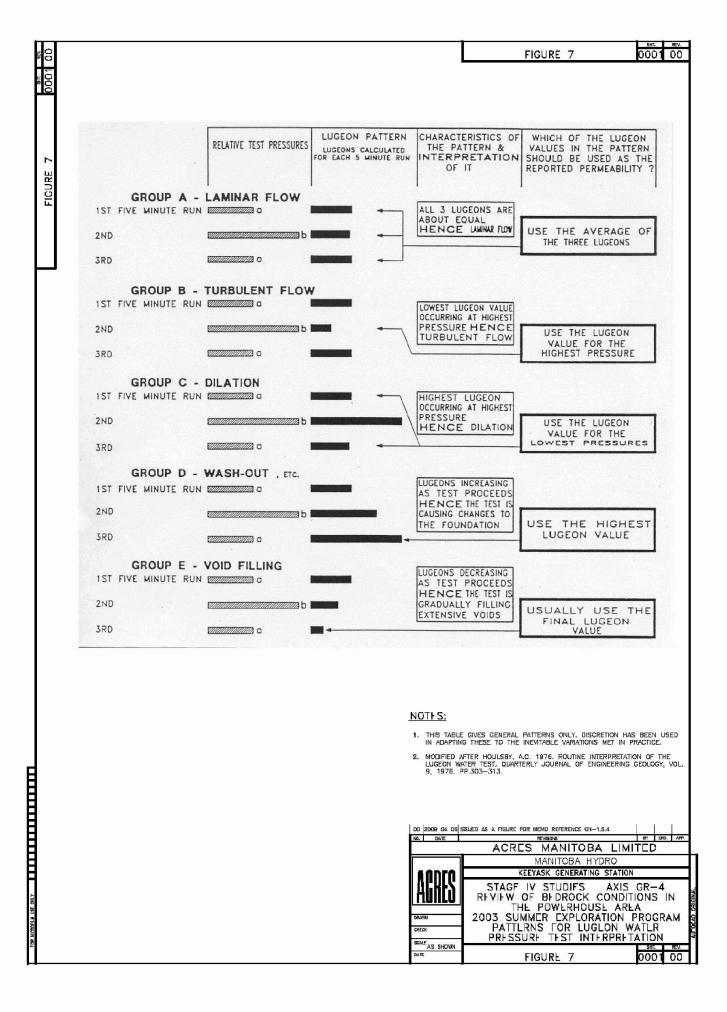

Notes:

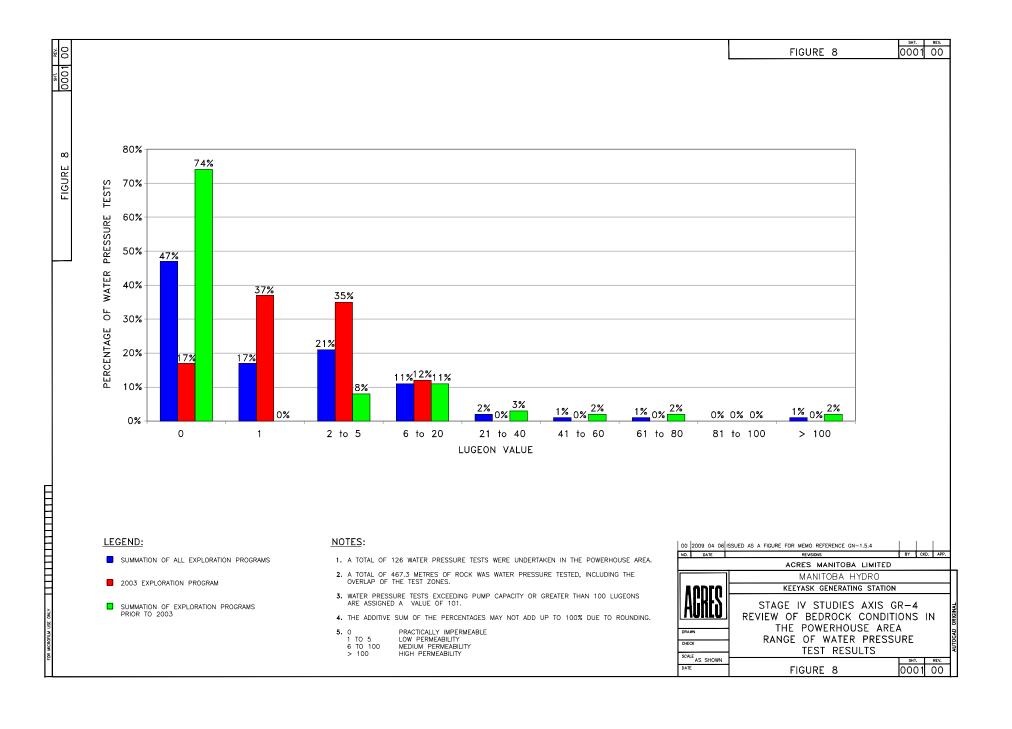

⁽¹⁾ Conglomerates and breccias may present a wide range of m_i values depending on the nature of the cementing material and the degree of cementation, so they may range from values similar to sandstone to values used for the fine grained sediments.

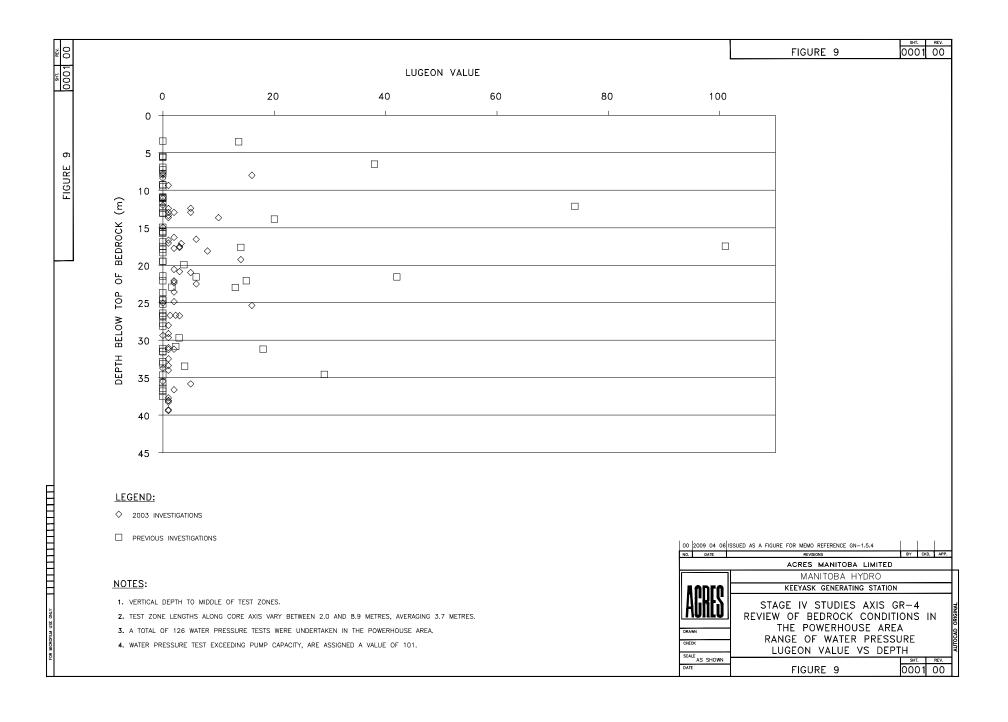

These values are for intact rock specimens tested normal to bedding or foliation. The value of m_i will be significantly different if failure occurs along a weaknesses plane.

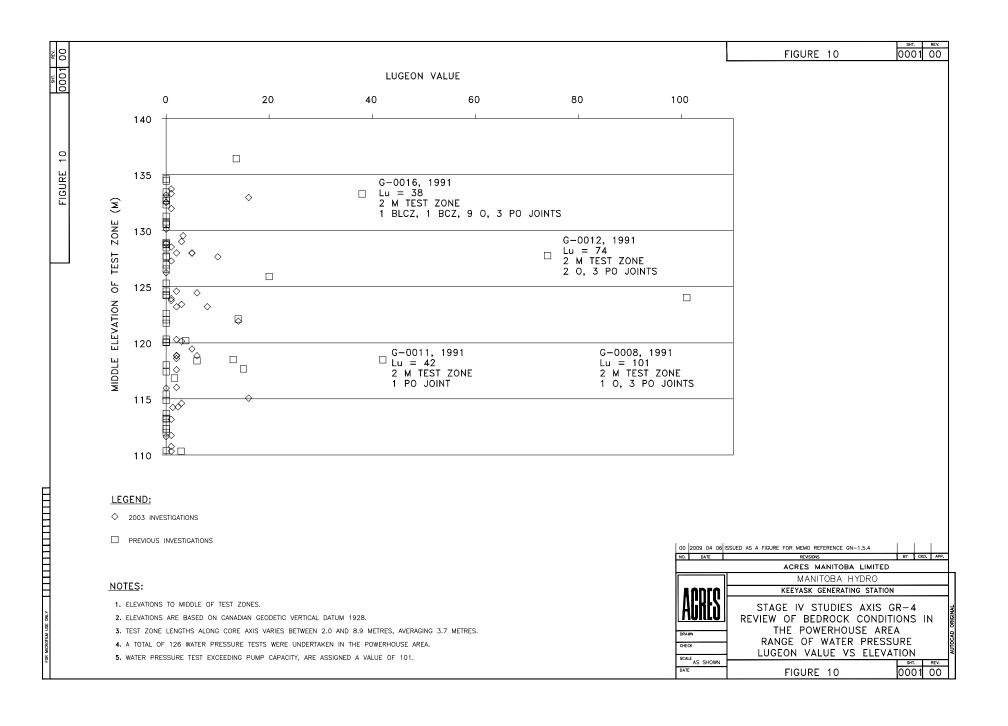

Figures

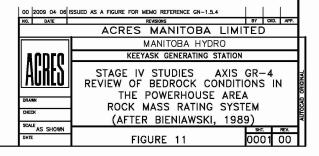











A. (CLASSIFI	CATION PARA	ETER	RS AND THEIR RATI	NGS			w		
	P	arameter				Range of values	77			
		Point-load	ex	>10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	uniaxial	comp	ressi
1			np.	>250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	2 MPa	1-5	<
		Rating	\neg	15	12	7	4		0	
	Drill c	ore Quality RQL	\neg	90% - 100%	75% - 90%	50% - 75%	25% - 50%		< 25%	
2		Rating	_	20	17	13	8		3	
-	Spacin	g of discontinuiti	s	> 2 m	0.6 - 2 . m	200 - 600 mm	60 - 200 mm	<	60 mm	1
3		Rating	\top	20	15	10	8		5	
4	Conditio	on of discontinuit (See E)	es N U	lot continuous lo separation Inweathered wall	Slightly rough surfaces Separation < 1 mm Slightly weathered walls	Slightly rough surfaces Separation < 1 mm Highly weathered walls	Slickensided surfaces or Gouge < 5 mm thick or Separation 1-5 mm Continuous	thick Separat	or ion > 5	
		Rating		30	25	20	10		0	
	Parameter									
5				0	< 0.1	0.1, - 0.2	0.2 - 0.5	MPa uniaxial test is preported to the set is preported to the	> 0.5	
	Point-load Poi									
Strength Point-load intend index 1-10 MPa 2-4 MPa 1-2 MPa For this town compression of intend index Indianated Point Point										
B. R	RATING A	DJUSTMENT F	R DI	SCONTINUITY ORIE	NTATIONS (See F)		700000			
Strik	ke and dip	orientations		Very favourable	Favourable	Fair	Unfavourable	Very l	Jnfavou	rabl
		Tunnels & mir	es	0	-2	-5	-10		-12	
R	latings	Foundations		0	-2	-7	-15	Uniaxial compress test is preferred 5 - 25		
		Slopes		0	-5	-25	-50			
C. F	OCK MA	SS CLASSES	ETER	MINED FROM TOTA	L RATINGS				3	1
Rati	ing			100 ← 81	80 ← 61	60 ← 41	40 ← 21		< 21	
Çlas	ss numbe	r		4	ii ii	III	IV		V	
Des	cription			Very good rock	Good rock	Fair rock	Poor rock	Ven	y poor r	ock
D. N	MEANING	OF ROCK CLA	SSES		<u> </u>					
Clas	ss numbe	r		1	ll ll	111	IV		V	
Ave	rage stan	d-up time	1 2	20 yrs for 15 m span	1 year for 10 m spa	1 week for 5 m span	10 hrs for 2.5 m spar	30 min	for 1 m	spa
Coh	esion of r	ock mass (kPa)		> 400	300 - 400	200 - 300	100 - 200		< 100	
Fric	tion angle	of rock mass (d	g)	> 45	35 - 45	25 - 35	15 - 25		< 15	
Parameter										
Parameter										
		perture)	一十		< 0.1 mm	0.1 - 1.0 mm	1 - 5 mm	1 :		
Parameter										
	tunnel length (I/m) Ground water (Joint water press)/ General conditions RATING ADJUSTMENT FOR DISCONTINUITY ORI ke and dip orientations Tunnels & mines Foundations OSlopes OROCK MASS CLASSES DETERMINED FROM TOT ling Total Control of the service of the serv					Slightly rough	Smooth	Slic		ed
		e)	\dashv			Hard filling > 5 mm	Soft filling < 5 mm	Soft fi		nn c
Rati	ing	· ·				2		<u> </u>		
						weathered		De		ed
F. E	Parameter									
		Strike per	endic	cular to tunnel axis	T	Strik	e parallel to tunnel axis	3		
	Drive wit				Dip 20 - 45°				5°	_
								Fair		,
-			90°	Drive against dir	o - Dip 20-45°	Dip 0-:	20 - Irrespective of stri	ke°		
	-30									
		, an		L						

^{*} Some conditions are mutually exclusive . For example, if infilling is present, the roughness of the surface will be overshadowed by the influence of the gouge. In such cases use A.4 directly.

** Modified after Wickham et al (1972).

NOTES:

1. THIS TABLE USES SIX PARAMETERS TO CLASSIFY A ROCK MASS.

