Keeyask Generation Project Terrestrial Effects Monitoring Plan

# Mercury in Wildlife Monitoring Report

TEMP-2023-16







Manitoba Environment and Climate Client File 5550.00 Manitoba Environment Act Licence No. 3107

#### 2022 - 2023

## **KEEYASK GENERATION PROJECT**

#### **TERRESTRIAL EFFECTS MONITORING PLAN**

REPORT #TEMP-2023-16

#### **MERCURY MONITORING IN WILDLIFE**

#### YEAR 1 OPERATION

#### 2022

Prepared for

Manitoba Hydro

By

Wildlife Resource Consulting Services MB Inc.

June 2023

This report should be cited as follows:

Wildlife Resource Consulting Services MB Inc. 2023. Keeyask Generation Project Terrestrial Effects Monitoring Plan Report #TEMP-2023-16: Mercury Monitoring in Wildlife – Year 1 Operation, 2022. A report prepared for Manitoba Hydro by Wildlife Resource Consulting Services MB Inc., June 2023.

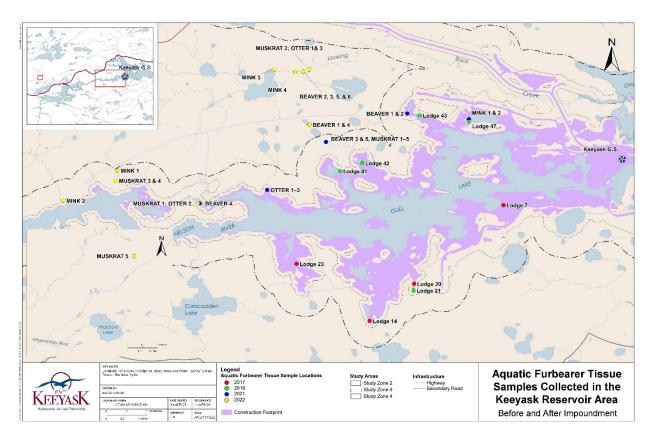


### SUMMARY

#### Background

Construction of the Keeyask Generation Project (the Project) at Gull Rapids began in July 2014, the reservoir was flooded in early September 2020, and the generating station was fully operational in March 2022. The Keeyask Hydropower Limited Partnership (KHLP) was required to prepare a plan to monitor the effects of construction and operation of the generating station on the terrestrial environment. Monitoring results will help the KHLP, government regulators, members of local First Nation communities, and the general public understand how construction and operation of the generating station will affect the environment, and whether more needs to be done to reduce harmful effects.

Reservoir flooding (also called impoundment) was expected to increase mercury levels in the Keeyask reservoir, which could affect aquatic furbearers such as beaver, muskrat, mink, and river otter. Potential Project effects included increased mercury levels in fish, and in mink and river otter, which are both fish-eating aquatic furbearers. Effects on aquatic furbearers are linked to domestic resource use and human health.


#### Why is the study being done?

The objective of the study is to compare mercury levels in aquatic furbearers before the Keeyask reservoir was impounded with post-impoundment levels to determine if the concentration of mercury in beaver, muskrat, mink, and river otter changes during Project operation.

#### What was done?

Tissue samples (liver, leg muscle, and kidney) from beaver, muskrat, mink, and river otter trapped near the Keeyask reservoir in the winters of 2021/22 and 2022/23 were analyzed for mercury. All sampled animals were trapped by the registered trapline holder from Tataskweyak Cree Nation. Tissue samples were also collected in the future reservoir area by the registered trapline holder in the winters of 2016/17 and 2017/18, during Project construction but before the reservoir was impounded.





### Aquatic Furbearer Tissue Samples Collected in the Keeyask Reservoir Area before (2016/17, 2017/18) and after (2021/22, 2022/23) Impoundment

#### What was found?

No increase in mercury levels in beaver, muskrat, or mink was observed shortly after the reservoir was impounded, but mercury levels in some river otters increased. Caution should be used in the interpretation of these results because sample sizes were relatively small.

#### What does it mean?

No change in mercury levels in beavers was anticipated after the reservoir was impounded because of the very small amounts of mercury taken up by the plants that they eat. Small increases in mercury levels in muskrats were expected because they eat aquatic animals, which were expected to accumulate mercury after impoundment. As predicted, mercury levels in beaver and muskrat tissue collected after the reservoir was impounded remained low and no increase was observed during the winters of 2021/22 and 2022/23.

Mercury levels in mink and river otter were expected to increase after reservoir impoundment. Mercury levels in mink were somewhat lower after the reservoir was impounded than before, likely because their diet is mainly small mammals and only occasionally fish. The increased mercury levels in river otters suggested that some whose ranges overlapped the reservoir were beginning



to accumulate mercury in their tissues, as anticipated. Mercury levels in river otters in 2021/22 and 2022/23 were well within the peak range predicted in the Environmental Impact Assessment.

#### What will be done next?

Mercury levels in tissues from aquatic furbearers trapped during Project operation will continue to be analyzed and added to the existing database for comparison with mercury levels in aquatic furbearers before the reservoir was impounded. If samples from other wild foods such as waterfowl, moose, or snowshoe hare are submitted by the partner First Nations during Project operation, these will also be analyzed to monitor mercury in the environment. Results from this study are provided to the Project toxicologist to review for potential risks to human health.



### **STUDY TEAM**

We would like to thank Sherrie Mason and Rachel Boone of Manitoba Hydro and Ron Bretecher of North/South Consultants Inc. for logistical assistance in the field. We would also like to thank Dr. James Ehnes of ECOSTEM Ltd. for GIS cartographic services. Biologists and other personnel who contributed to the study included:

- Robert Berger, Wildlife Resource Consulting Services MB Inc. (WRCS) Reporting
- Andrea Ambrose, WRCS Data analysis and reporting
- Jonathan Saunders Licensed trapper, Tataskweyak Cree Nation (TCN)
- Curtis Saunders Trapping assistant, TCN
- Mark Saunders Trapping assistant, TCN



### **TABLE OF CONTENTS**

| 1.0 |                         | 1  |
|-----|-------------------------|----|
| 2.0 | Methods                 | 3  |
| 3.0 | RESULTS                 | 6  |
| 4.0 | DISCUSSION              | 12 |
| 5.0 | SUMMARY AND CONCLUSIONS | 13 |
| 6.0 | LITERATURE CITED        | 14 |



### LIST OF TABLES

| Table 1: | On-system Aquatic Furbearer Tissue Samples Collected before (2016/17, 2017/18) and after (2021/22, 2022/23) Reservoir Impoundment                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2: | Mercury Concentration in On-system Aquatic Furbearers after Reservoir<br>Impoundment, Winter 2022/23                                                                                                       |
| Table 3: | Mean Mercury Concentration (mg/kg wwt) in On-system Beaver and Muskrat<br>Tissue before (2003–2018) and after (2021/22, 2022/23) Reservoir<br>Impoundment                                                  |
| Table 4: | Model Estimates of Mean and Most-likely Range of Total Mercury<br>Concentration (mg/kg wwt) in the Liver and Muscle of Beaver and Muskrat<br>that Forage within the Keeyask Reservoir and/or Stephens Lake |
| Table 5: | Mean Mercury Concentration (mg/kg wwt) in On-system Mink and River<br>Otter Tissue before (2003–2018) and after (2021/22, 2022/23) Reservoir<br>Impoundment                                                |
| Table 6: | Model Estimates of Mean and Most-likely Range of Total Mercury<br>Concentration (mg/kg wwt) in the Liver of Mink and River Otter that Forage<br>within the Keeyask Reservoir and/or Stephens Lake          |
| Table 7: | Estimates of Mean and Most-likely Range of Total Mercury Concentration (mg/kg wwt) in the Muscle of Wild Foods 11                                                                                          |

### LIST OF FIGURES

| Figure 1: | Mean Mercury Concentration in On-system Beaver Tissue before and after<br>Reservoir Impoundment   | 7 |
|-----------|---------------------------------------------------------------------------------------------------|---|
| Figure 2: | Mean Mercury Concentration in On-system Muskrat Tissue before and after Reservoir Impoundment     |   |
| Figure 3: | Mean Mercury Concentration in On-system Mink Tissue before and after<br>Reservoir Impoundment     | 9 |
| Figure 4: | Mean Mercury Concentration in On-system River Otter Tissue before and after Reservoir Impoundment |   |



### LIST OF MAPS

### LIST OF APPENDICES

| Appendix 1: Mercury in Wildlife Results 2003–2008, 2017–2018, and 2021/22 | 15 |
|---------------------------------------------------------------------------|----|
| Appendix 2: Laboratory Results 2022/23                                    | 17 |



## **1.0 INTRODUCTION**

The Keeyask Generation Project (the Project) is a 695-megawatt hydroelectric generating station (GS) located at the former Gull Rapids on the lower Nelson River in northern Manitoba where Gull Lake flows into Stephens Lake. Project construction began in July 2014, the reservoir was impounded in early September 2020, and the GS was fully operational in March 2022.

The Keeyask Generation Project Response to EIS Guidelines (the EIS), completed in June 2012, provides a summary of predicted effects and planned mitigation for the Project. Technical supporting information for the terrestrial environment, including a description of the environmental setting, effects and mitigation, and a summary of proposed monitoring and follow-up programs is provided in the Keeyask Generation Project Environmental Impact Statement Terrestrial Supporting Volume (TE SV). The Keeyask Generation Project Terrestrial Effects Monitoring Plan (TEMP) was developed as part of the licensing process for the Project. Monitoring activities for various components of the terrestrial environment were described, including the focus of this report, mercury in wildlife, during the construction and operation phases.

Mercury is a naturally occurring metal that exists in several forms in the environment. Microorganisms in soil and water can transform mercury from one form to another. Methylmercury, a common form of organic mercury, can easily enter the aquatic food web and bioaccumulate when higher-level organisms absorb it from the lower-level organisms that they consume. Methylmercury levels typically increase in water after flooding, as the inorganic mercury released from inundated soil is converted to organic mercury by bacteria feeding on decomposing plants (St. Louis et al. 2004). Because plants typically accumulate relatively low levels of mercury (Lindsay and Bookhout 1978), methylmercury levels in herbivorous aquatic furbearers such as beaver (*Castor canadensis*) and omnivores such as muskrat (*Ondatra zibethicus*) are considerably lower than in carnivorous aquatic furbearers such as mink (*Neovison vison*) and river otter (*Lontra canadensis*), which eat fish and other aquatic animals (Sheffy and St. Amant 1982).

Reservoir impoundment was expected to increase methylmercury ("mercury") levels in the Keeyask reservoir, which could affect aquatic furbearers. Potential Project effects included increased mercury concentrations in fish, and in mink and river otter—both fish-eating aquatic furbearers. Effects on aquatic furbearers are linked to domestic resource use. Mercury levels in beaver, muskrat, mink, and river otter were measured in tissue samples collected before Project construction began. Because impoundment flooded habitat within the reservoir footprint, beaver and muskrat were trapped out of the future reservoir area in the winters of 2016/17 and 2017/18 to prevent prolonged exposure and displacement deaths (Wildlife Resource Consulting Services MB Inc. 2018). Tissue samples from trapped animals were collected and submitted for mercury analysis. Additional samples were collected in the winters of 2021/22 and 2022/23, after the reservoir was impounded. All sampled animals were trapped by the Registered Trap Line (RTL) 15 registered trapline holder (Tataskweyak Cree Nation) each winter.



As described in Section 7.0 of the TEMP, the objective of the study is to compare mercury levels in aquatic furbearers before and during Project construction with post-impoundment levels to determine if the concentration of mercury in beaver, muskrat, mink, and river otter changes during Project operation. Mercury levels in waterfowl and other wild foods such as moose (*Alces alces*) and snowshoe hare (*Lepus americanus*) are to be monitored if tissue samples are submitted by partner First Nations resource users, to monitor mercury levels in the environment after the Keeyask reservoir is flooded. Results from this study are provided to the Project toxicologist to review for potential risks to human health.

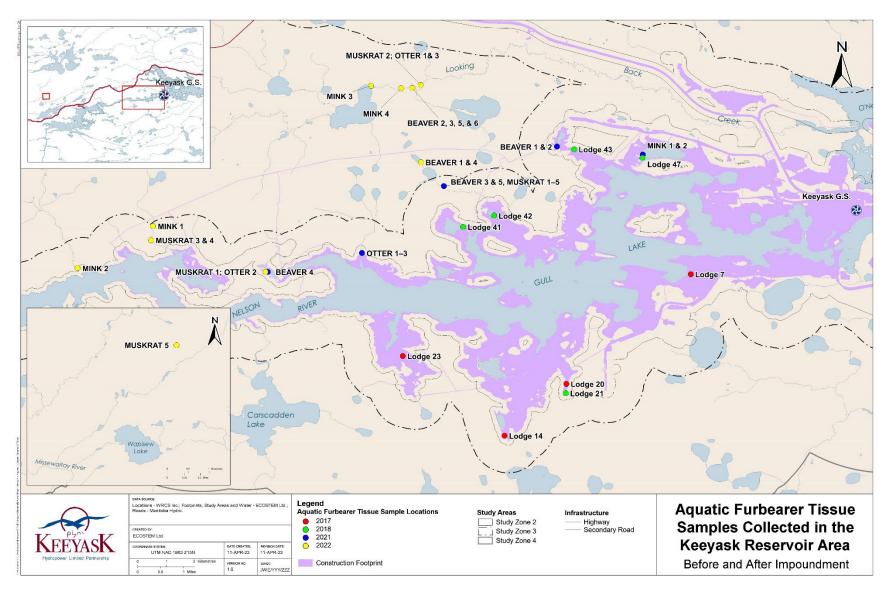


## 2.0 METHODS

During Project construction, tissue samples (leg muscle, liver, and/or kidney) from six beavers, one muskrat, and two river otters trapped at beaver lodges in the future reservoir area (Map 1) in March 2017 and January and February 2018 were analyzed for mercury (Table 1). For testing purposes, submissions of beaver organs were limited to kidneys in 2016/17 and 2017/18. After the reservoir was impounded, additional samples from aquatic furbearers trapped from RTL 15 (categorized as "on-system" because it overlapped the Nelson River and was also located in Study Zone 5) in winter 2021/22 included five beavers, five muskrats, two mink, and three river otters. In winter 2022/23, samples from six beavers, five muskrats, four mink, and three river otters were collected. No samples from other wildlife species were submitted during the Project's construction and early operation monitoring periods.

| Winter<br>Trapped | Species     | Lodge or<br>Individual | Tissue Collected      | Location            |
|-------------------|-------------|------------------------|-----------------------|---------------------|
| 2016/17           | Beaver      | Lodge 7                | Muscle                | 15 V 357954 6244917 |
|                   | Beaver      | Lodge 23               | Muscle, kidney        | 15 V 347619 6241984 |
|                   | River otter | Lodge 14               | Liver, muscle, kidney | 15 V 351273 6239131 |
|                   | River otter | Lodge 20               | Liver, muscle, kidney | 15 V 353487 6240990 |
| 2017/18           | Beaver      | Lodge 21               | Muscle, kidney        | 15 V 353469 6240652 |
|                   | Beaver      | Lodge 41               | Muscle, kidney        | 15 V 349789 6246611 |
|                   | Beaver      | Lodge 42               | Muscle                | 15 V 350894 6247016 |
|                   | Beaver      | Lodge 47               | Muscle                | 15 V 356236 6249204 |
|                   | Muskrat     | Lodge 43               | Liver, muscle, kidney | 15 V 353769 6249395 |
| 2021/22           | Beaver      | BEAVER 1               | Liver, muscle, kidney | 15 V 353154 6249488 |
|                   | Beaver      | BEAVER 2               | Liver, muscle, kidney | 15 V 353154 6249488 |
|                   | Beaver      | BEAVER 3               | Liver, muscle, kidney | 15 V 349098 6248074 |
|                   | Beaver      | BEAVER 4               | Liver, muscle, kidney | 15 V 342782 6245002 |
|                   | Beaver      | BEAVER 5               | Liver, muscle, kidney | 15 V 349098 6248074 |
|                   | Muskrat     | MUSKRAT 1              | Liver, muscle, kidney | 15 V 349098 6248074 |
|                   | Muskrat     | MUSKRAT 2              | Liver, muscle, kidney | 15 V 349098 6248074 |
|                   | Muskrat     | MUSKRAT 3              | Liver, muscle, kidney | 15 V 349098 6248074 |
|                   | Muskrat     | MUSKRAT 4              | Liver, muscle, kidney | 15 V 349098 6248074 |
|                   | Muskrat     | MUSKRAT 5              | Liver, muscle, kidney | 15 V 349098 6248074 |
|                   | Mink        | MINK 1                 | Liver, muscle, kidney | 15 V 356229 6249198 |
|                   | Mink        | MINK 2                 | Liver, muscle, kidney | 15 V 356229 6249198 |
|                   | River otter | OTTER 1                | Liver, muscle, kidney | 15 V 346158 6245678 |
|                   | River otter | OTTER 2                | Liver, muscle, kidney | 15 V 346158 6245678 |
|                   | River otter | OTTER 3                | Liver, muscle, kidney | 15 V 346158 6245678 |
| 2022/23           | Beaver      | BEAVER 1               | Liver, muscle, kidney | 15 V 348273 6248930 |
|                   | Beaver      | BEAVER 2               | Liver, muscle, kidney | 15 V 347962 6251588 |

### Table 1:On-system Aquatic Furbearer Tissue Samples Collected before (2016/17,<br/>2017/18) and after (2021/22, 2022/23) Reservoir Impoundment




| Winter<br>Trapped | Species     | Lodge or<br>Individual | Tissue Collected      | Location            |
|-------------------|-------------|------------------------|-----------------------|---------------------|
| 2022/23           | Beaver      | BEAVER 3               | Liver, muscle, kidney | 15 V 347962 6251588 |
|                   | Beaver      | BEAVER 4               | Liver, muscle, kidney | 15 V 348273 6248930 |
|                   | Beaver      | BEAVER 5               | Liver, muscle, kidney | 15 V 347962 6251588 |
|                   | Beaver      | BEAVER 6               | Liver, muscle, kidney | 15 V 347962 6251588 |
|                   | Muskrat     | MUSKRAT 1              | Liver, muscle, kidney | 15 V 342782 6245002 |
|                   | Muskrat     | MUSKRAT 2              | Liver, muscle, kidney | 15 V 348263 6251699 |
|                   | Muskrat     | MUSKRAT 3              | Liver, muscle, kidney | 15 V 338588 6246134 |
|                   | Muskrat     | MUSKRAT 4              | Liver, muscle, kidney | 15 V 338588 6246134 |
|                   | Muskrat     | MUSKRAT 5              | Liver, muscle, kidney | 14 V 651972 6244812 |
|                   | Mink        | MINK 1                 | Liver, muscle, kidney | 15 V 338663 6246643 |
|                   | Mink        | MINK 2                 | Liver, muscle, kidney | 15 V 335956 6245133 |
|                   | Mink        | MINK 3                 | Liver, muscle, kidney | 15 V 346482 6251670 |
|                   | Mink        | MINK 4                 | Liver, muscle, kidney | 15 V 347556 6251572 |
|                   | River otter | OTTER 1                | Liver, muscle, kidney | 15 V 348263 6251699 |
|                   | River otter | OTTER 2                | Liver, muscle, kidney | 15 V 342782 6245002 |
|                   | River otter | OTTER 3                | Liver, muscle, kidney | 15 V 348263 6251699 |

Tissue samples were kept frozen until submission to ALS Environmental for mercury analysis, where the EPA 200.31/EPA 1631E (mod) method was used. Results were reported as milligrams of mercury per kilogram of wet weight (mg/kg wwt).

Results from the samples collected during Project construction (the winters of 2016/17 and 2017/18) were compiled with those from samples collected voluntarily from on-system traplines in the Split Lake, York Landing, and Fox Lake Resource Management Areas from February 2003 to April 2008, well before Project construction and reservoir impoundment. The home ranges of the sampled animals were presumed to overlap the regulated water system. Pre-impoundment samples were compared with those collected in the winters of 2021/22 and 2022/23, after the reservoir was impounded and when mercury was expected to begin to accumulate within aquatic furbearers' tissues. Pre-impoundment mercury levels in aquatic furbearers are provided in Appendix 1. For results reported as <0.01 mg/kg wwt, a value of 0.00099 was used to calculate mean mercury levels in aquatic furbearer tissues, and a value of 0.00099 was used for results reported as <0.001 mg/kg wwt.





### Map 1: Aquatic Furbearer Tissue Samples Collected in the Keeyask Reservoir Area before (2016/17, 2017/18) and after (2021/22, 2022/23) Impoundment



## 3.0 RESULTS

Mercury levels remained low in beaver and muskrat tissue in winter 2022/23, with some variation among sampled animals (Table 2). Mercury levels were generally greater in mink and river otter tissue samples. Greater levels were measured in the tissues of MINK 3 than in the other mink. Mercury levels in river otter tissues were considerably greater in OTTER 2 than in the other two individuals. Complete laboratory analysis results from the 2022/23 samples are provided in Appendix 2.

| <b>.</b> . |                |              | Mercury Concentration (mg/kg wwt) <sup>1</sup> |               |               |
|------------|----------------|--------------|------------------------------------------------|---------------|---------------|
| Species    | Individual Yea | Year Trapped | Liver                                          | Muscle        | Kidney        |
| Beaver     | BEAVER 1       | 2022         | 0.0012                                         | 0.0017        | 0.0182        |
|            | BEAVER 2       | 2022         | 0.0014                                         | 0.0017        | 0.0028        |
|            | BEAVER 3       | 2022         | 0.0012                                         | 0.0015        | 0.0043        |
|            | BEAVER 4       | 2022         | 0.0019                                         | 0.0019        | 0.0165        |
|            | BEAVER 5       | 2022         | 0.0012                                         | 0.0026        | 0.0027        |
|            | BEAVER 6       | 2022         | 0.0017                                         | 0.0020        | 0.0056        |
|            |                | Range        | 0.0012-0.0019                                  | 0.0015-0.0026 | 0.0027-0.0182 |
| Muskrat    | MUSKRAT 1      | 2022         | 0.0578                                         | 0.0372        | 0.102         |
|            | MUSKRAT 2      | 2022         | 0.0017                                         | 0.0088        | 0.0039        |
|            | MUSKRAT 3      | 2022         | 0.0017                                         | 0.0117        | 0.0026        |
|            | MUSKRAT 4      | 2022         | 0.0019                                         | 0.0135        | 0.0037        |
|            | MUSKRAT 5      | 2022         | 0.0592                                         | 0.0390        | 0.109         |
|            |                | Range        | 0.0017-0.0592                                  | 0.0088-0.0390 | 0.0026-0.109  |
| Mink       | MINK 1         | 2022         | 0.418                                          | 0.314         | 0.558         |
|            | MINK 2         | 2022         | 0.587                                          | 0.699         | 0.566         |
|            | MINK 3         | 2022         | 2.14                                           | 1.25          | 1.56          |
|            | MINK 4         | 2022         | 0.637                                          | 0.570         | 0.849         |
|            |                | Range        | 0.418-2.14                                     | 0.314-1.25    | 0.558-1.56    |
| River      | OTTER 1        | 2022         | 0.519                                          | 0.160         | 0.408         |
| otter      | OTTER 2        | 2022         | 6.17                                           | 1.21          | 4.60          |
|            | OTTER 3        | 2022         | 0.403                                          | 0.220         | 0.590         |
|            |                | Range        | 0.403-6.17                                     | 0.160-1.21    | 0.408-4.60    |

| Table 2: | Mercury Concentration in On-system Aquatic Furbearers after Reservoir |
|----------|-----------------------------------------------------------------------|
|          | Impoundment, Winter 2022/23                                           |

1. Decimal places reported as in results from the laboratory.

Mean mercury levels in beaver liver and muscle tissue were low before and after reservoir impoundment (Table 3; Figure 1). Similar mercury levels in muskrat liver and muscle tissue were also observed before and after the reservoir was impounded (Figure 2). The apparent reduction in mercury levels in beaver and muskrat tissues after impoundment is most likely the result of



improvements in detection limits over time, where more precise measurements of mercury were made in the laboratory in recent years.

# Table 3:Mean Mercury Concentration (mg/kg wwt) in On-system Beaver and MuskratTissue before (2003–2018) and after (2021/22, 2022/23) ReservoirImpoundment

|         | Liver                   |                  | Mu              | scle             |
|---------|-------------------------|------------------|-----------------|------------------|
|         | Pre-impoundment         | Post-impoundment | Pre-impoundment | Post-impoundment |
| Beaver  | 0.008 (16) <sup>1</sup> | 0.003 (11)       | 0.008 (40)      | 0.004 (11)       |
| Muskrat | 0.022 (5)               | 0.016 (10)       | 0.013 (7)       | 0.015 (10)       |

1. Number of samples is in parentheses.

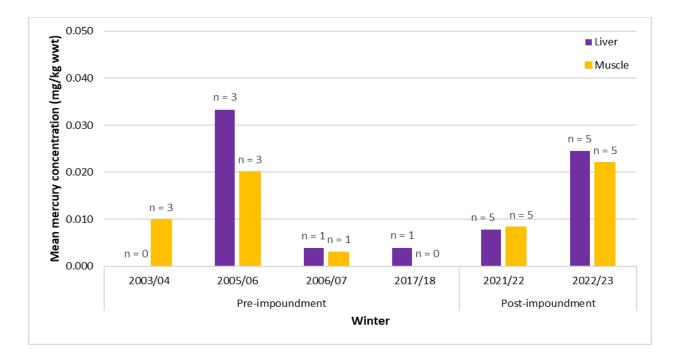




Figure 1: Mean Mercury Concentration in On-system Beaver Tissue before and after Reservoir Impoundment





#### Figure 2: Mean Mercury Concentration in On-system Muskrat Tissue before and after Reservoir Impoundment

After reservoir impoundment, mercury levels in beaver liver tissue ranged from 0.001 to 0.011 mg/kg wwt and ranged from 0.001 to 0.016 in muscle tissue. Mercury levels in muskrat liver tissue ranged from 0.002 to 0.061 mg/kg wwt and in muscle tissue ranged from 0.003 to 0.039 mg/kg wwt over the same period. Mercury levels in all beaver liver and muscle samples collected after reservoir impoundment were within the early and peak ranges predicted in the EIS (Table 4). Mercury levels in most muskrat liver and muscle samples collected after impoundment were within the early range predicted in the EIS, and all were within the expected peak range.

Table 4:Model Estimates of Mean and Most-likely Range of Total Mercury Concentration<br/>(mg/kg wwt) in the Liver and Muscle of Beaver and Muskrat that Forage within<br/>the Keeyask Reservoir and/or Stephens Lake

| Species | Existing Environment<br>Day 1 | Peak<br>Year 3 to 7 | Long-term<br>Years 20–30 |
|---------|-------------------------------|---------------------|--------------------------|
| Beaver  | 0.01 (<0.01-0.05)             | 0.01 (<0.01-0.05)   | 0.01 (<0.01-0.05)        |
| Muskrat | 0.02 (<0.01-0.06)             | 0.04 (<0.01-0.12)   | 0.02 (<0.01-0.06)        |

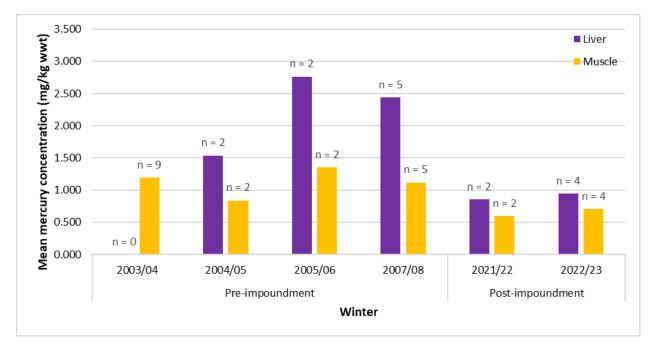
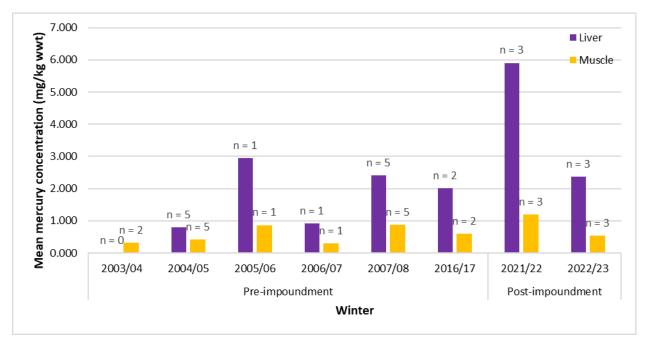

Mean mercury levels in mink liver and muscle tissue were somewhat lower after the reservoir was impounded than before (Table 5; Figure 3), but mean mercury levels in river otter liver and muscle tissue increased after the reservoir was impounded (Figure 4).



Table 5:Mean Mercury Concentration (mg/kg wwt) in On-system Mink and River Otter<br/>Tissue before (2003–2018) and after (2021/22, 2022/23) Reservoir<br/>Impoundment


|             | Liver                  |                  | Mu              | scle             |
|-------------|------------------------|------------------|-----------------|------------------|
|             | Pre-impoundment        | Post-impoundment | Pre-impoundment | Post-impoundment |
| Mink        | 2.310 (9) <sup>1</sup> | 0.916 (6)        | 1.150 (18)      | 0.672 (6)        |
| River otter | 1.708 (14)             | 4.134 (6)        | 0.591 (16)      | 0.864 (6)        |

1. Number of samples is in parentheses.



#### Figure 3: Mean Mercury Concentration in On-system Mink Tissue before and after Reservoir Impoundment





#### Figure 4: Mean Mercury Concentration in On-system River Otter Tissue before and after Reservoir Impoundment

After reservoir impoundment, mercury levels in mink liver tissue ranged from 0.418 to 3.040 mg/kg wwt, within the early and peak ranges predicted in the EIS (Table 6). Mercury levels ranged from 0.303 to 11.000 mg/kg wwt in river otter liver tissue, well within the predicted peak range.

# Table 6:Model Estimates of Mean and Most-likely Range of Total Mercury Concentration<br/>(mg/kg wwt) in the Liver of Mink and River Otter that Forage within the<br/>Keeyask Reservoir and/or Stephens Lake

| Species     | Existing Environment<br>Day 1 | Peak<br>Year 3 to 7 | Long-term<br>Years 20–30 |
|-------------|-------------------------------|---------------------|--------------------------|
| Mink        | 1.52 (0.56–3.16)              | 4.00 (0.56–30.60)   | 1.52 (0.56–3.16)         |
| River otter | 0.55 (0.28–3.97)              | 6.00 (0.28–17.63)   | 0.55 (0.28–3.97)         |

For other wild foods, no change in mercury was anticipated for Canada goose (*Branta canadensis*), moose, or snowshoe hare (Table 7). A small increase was predicted for mallard (*Anas platyrhynchos*). No samples from local resource users were submitted in 2021/22 or 2022/23 to verify these EIS predictions.



## Table 7:Estimates of Mean and Most-likely Range of Total Mercury Concentration<br/>(mg/kg wwt) in the Muscle of Wild Foods

| Granica                    | Existing Environment | Peak              | Long-term         |
|----------------------------|----------------------|-------------------|-------------------|
| Species                    | Day 1                | Year 3 to 7       | Years 20–30       |
| Canada goose <sup>1</sup>  | 0.03                 | ~0.03             | 0.03              |
| Mallard <sup>1</sup>       | 0.04                 | <0.19             | 0.04              |
| Moose <sup>2</sup>         | 0.07 (<0.01-0.17)    | 0.07 (<0.01-0.17) | 0.07 (<0.01-0.17) |
| Snowshoe hare <sup>2</sup> | 0.05 (<0.01-0.12)    | 0.05 (<0.01-0.12) | 0.05 (<0.01-0.12) |

1. Model-predicted for fish inhabiting the Keeyask reservoir.

2. Mercury concentration was a literature estimate and may have greater uncertainty than other species for which measured values were obtained from the study area.



## 4.0 DISCUSSION

The Keeyask reservoir was impounded in September 2020. Aquatic furbearer tissue samples from winter 2021/22 and 2022/23 were collected early in the predicted mercury accumulation process to monitor for the potential bioaccumulation of mercury over time. Changes in mercury levels were expected for certain aquatic furbearer species, which these early results will help to confirm. No results of mercury monitoring in aquatic furbearers could be found for other hydroelectric reservoirs in Canada for comparison.

No change in mercury levels in beavers was anticipated after the Keeyask reservoir was impounded due to the minute quantities of mercury taken up by the vegetation that they consume. As expected, mean mercury levels in beaver tissue collected after reservoir impoundment were low and there had been no apparent increase since the pre-impoundment samples were collected from 2003 to 2018.

Marginal increases in mercury levels in muskrats were anticipated after reservoir impoundment because they forage on aquatic plants and animals, the latter of which will likely accumulate more mercury in the reservoir following impoundment. No increase in mean mercury levels in muskrat liver tissue was observed after the first two years of reservoir impoundment. Mercury levels in muscle tissue were marginally greater after impoundment than before, but all values were well within the peak range predicted in the EIS.

Mercury levels in mink were expected to increase after reservoir impoundment, peak approximately seven years later, and then return to pre-Project levels after 20 to 30 years. The mean mercury level in mink liver tissue was lower after reservoir impoundment than before and all values were well within the early and peak ranges predicted in the EIS. Because minks' diet is primarily small mammals supplemented with fish and other wildlife (Eagle and Whitman 1998), mercury would be expected to accumulate relatively slowly in their tissues.

Mercury levels in river otters were expected to increase after reservoir impoundment, peak approximately seven years later, and then return to pre-Project levels after 20 to 30 years. The mean mercury level in river otter liver samples was greater after reservoir impoundment than before, suggesting that some river otters whose ranges likely overlapped the Keeyask reservoir were beginning to accumulate mercury in their tissues. Mercury levels in the livers of river otters collected after impoundment were well within the peak range predicted in the EIS. Because the sample sizes for all aquatic furbearers, particularly mink and river otter, were relatively small, caution should be used in the interpretation of the results.

No tissue samples from wild foods such as Canada goose, mallard, moose, and snowshoe hare have been submitted for analysis to date. Small increases in mercury levels in mallard were anticipated after reservoir impoundment; no changes in Canada goose, moose, and snowshoe hare were expected. If tissue samples of these wild food species are submitted during Project operation, they will be analyzed for mercury content. Results from all mercury in wildlife monitoring are shared with the Project toxicologist to assess potential risks to human health.



## **5.0 SUMMARY AND CONCLUSIONS**

No increase in mercury levels in beaver, muskrat, or mink was observed in winter 2021/22 and 2022/23, shortly after the Keeyask reservoir was impounded. Increased mercury levels in some river otters were observed. Mercury levels in all sampled animals were within the peak ranges predicted in the EIS. Caution should be used in the interpretation of these results because sample sizes were relatively small. Mercury concentrations in tissues from aquatic furbearers trapped during Project operation will be analyzed and added to the existing database for comparison with mercury concentration in aquatic furbearers before reservoir impoundment. If samples from other wild foods such as waterfowl, moose, or snowshoe hare are submitted for analysis by local resource users, they will be analyzed for mercury content. Results from all mercury in wildlife monitoring are shared with the Project toxicologist to assess potential risks to human health.



## 6.0 LITERATURE CITED

- Eagle, T.C. and Whitman, J.S. 1998. Mink. In Wild Furbearer Management and Conservation in North America. Edited by M. Novak, J.A. Baker, M.E. Obbard, and B. Malloch. Ontario Ministry of Natural Resources, Peterborough, ON. pp. 615–624.
- Lindsay, S.F. and Bookhout, T.A. 1978. Lead and mercury levels in vegetation from strip-mined areas in eastern Ohio. Bulletin of Environmental Contamination and Toxicology 19: 360–364 pp.
- Sheffy, T.B. and St. Amant, J.R. 1982. Mercury burdens in furbearers in Wisconsin. The Journal of Wildlife Management 46(4): 1117–1120 pp.
- St. Louis, V.L., Rudd. J.W.M., Kelly, C.A., Bodaly, R.A., Paterson, M.J., Beaty, K.G., Hesslein, R.H., Heyes, A., and Majewski, A.R. 2004. The rise and fall of mercury methylation in an experimental reservoir. Environmental Science & Technology 38(5): 1348–1358 pp.
- Wildlife Resource Consulting Services MB Inc. 2018. Keeyask Generation Project Terrestrial Effects Monitoring Plan Report #TEMP-2018-19: Beaver Habitat Effects and Mortality 2016 to 2018. A report prepared for Manitoba Hydro by Wildlife Resource Consulting Services MB Inc., June 2018.



### APPENDIX 1: MERCURY IN WILDLIFE RESULTS 2003–2008, 2017–2018, AND 2021/22



| <b>C</b> | Devie d1            |       | Liver              |        |       | Muscle             |        |
|----------|---------------------|-------|--------------------|--------|-------|--------------------|--------|
| Species  | Period <sup>1</sup> | Mean  | Range <sup>2</sup> | Number | Mean  | Range <sup>2</sup> | Number |
| Beaver   | 2003–2008           | 0.008 | 0.003-0.010        | 16     | 0.009 | 0.003-0.01         | 34     |
|          | 2016/17-2017/18     | _     | -                  | 0      | 0.006 | 0.003-0.012        | 6      |
|          | 2021/22             | 0.005 | <0.0010-0.0109     | 5      | 0.006 | <0.0010-0.0159     | 5      |
| Muskrat  | 2003–2008           | 0.026 | 0.004-0.061        | 4      | 0.013 | 0.003-0.027        | 7      |
|          | 2016/17-2017/18     | 0.004 | 0.004              | 1      | _     | -                  | 0      |
|          | 2021/22             | 0.008 | 0.0055-0.0133      | 5      | 0.008 | 0.0041-0.0141      | 5      |
| Mink     | 2003–2008           | 2.310 | 1.36-3.04          | 9      | 1.150 | 0.553-2.237        | 18     |
|          | 2016/17-2017/18     | _     | _                  | 0      | _     | _                  | 0      |
|          | 2021/22             | 0.858 | 0.585-1.13         | 2      | 0.599 | 0.539-0.659        | 2      |
| River    | 2003–2008           | 1.658 | 0.303–3.81         | 12     | 0.591 | 0.127–1.52         | 14     |
| otter    | 2016/17-2017/18     | 2.007 | 0.354-3.66         | 2      | 0.594 | 0.588-0.600        | 2      |
|          | 2021/22             | 5.903 | 2.12-11.0          | 3      | 1.198 | 0.480-2.48         | 3      |

### Table A-1:Mercury Concentration (mg/kg wwt) in On-system Aquatic Furbearer Liver and<br/>Muscle Tissue 2003–2008, 2016/17–2017/18, and 2021/22

1. 2003–2008: before Project construction; 2017–18: during Project construction before reservoir impoundment; 2021/22: during Project construction after reservoir impoundment

2. Decimal places reported as in results from the laboratory.

### Table A-2:Mercury Concentration (mg/kg wwt) in On-system Aquatic Furbearer Kidney<br/>Tissue 2016/17–2017/18 and 2021/22

| Species | Period <sup>1</sup>          | Mean <sup>2</sup> | Range <sup>2</sup> | Number |
|---------|------------------------------|-------------------|--------------------|--------|
| Beaver  | 2016/17-2017/18              | 0.030             | 0.0086-0.0428      | 3      |
|         | 2021/22                      | 0.020             | 0.0018-0.0447      | 5      |
| Muskrat | 2016/17-2017/18 <sup>3</sup> | -                 | -                  | -      |
|         | 2021/22                      | 0.033             | 0.0226-0.052       | 5      |
| Mink    | 2016/17-2017/18              | -                 | -                  | -      |
|         | 2021/22                      | 0.636             | 0.597–0.674        | 2      |
| River   | 2016/17-2017/18              | 1.33              | 1.28-1.38          | 2      |
| otter   | 2021/22                      | 3.16              | 1.46-5.83          | 3      |

1. 2017–18: during Project construction before reservoir impoundment; 2021/22: during Project construction after reservoir impoundment

2. Decimal places reported as in results from the laboratory.

3. Analysis of the one sample submitted failed.



### APPENDIX 2: LABORATORY RESULTS 2022/23



| Contact : Timothy<br>Address : 495-B M                                                                                                                         | <b>01236</b><br>Resource Consulting Services MB Inc.<br>Kroeker<br>Madison Street<br>g MB Canada R3J 1J2<br>2197 | LaboratoryWinnipeg - EnvironmentalkerAccount Manager: Craig Riddelln StreetAddress: 1329 Niakwa Road East, Unit 12<br>Winnipeg MB Canada R2J 3T4Canada R3J 1J2Telephone: + 1204 255 9720Date Samples Received: 03-Feb-2023 11:23Date Analysis Commenced: 03-Mar-2023Issue Date: 04-Apr-2023 15:05 |                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Client : Wildlife<br>Contact : Timothy<br>Address : 495-B M<br>Winnipe<br>Project :<br>PO :<br>C-O-C number :<br>Sampler :<br>Site :<br>Quote number : Mercury | Resource Consulting Services MB Inc.<br>Kroeker<br>Madison Street<br>Ig MB Canada R3J 1J2<br>2197                | Laboratory<br>Account Manager<br>Address<br>Telephone<br>Date Samples Received<br>Date Analysis Commenced                                                                                                                                                                                         | : Winnipeg - Environmental<br>: Craig Riddell<br>: 1329 Niakwa Road East, Unit 12<br>Winnipeg MB Canada R2J 3T4<br>: +1 204 255 9720<br>: 03-Feb-2023 11:23<br>: 03-Mar-2023 |  |
| Contact : Timothy<br>Address : 495-B M<br>Winnipe<br>Project :<br>PO :<br>Co-O-C number :<br>Sampler :<br>Site :<br>Quote number : Mercury                     | Kroeker<br>Madison Street<br>ig MB Canada R3J 1J2<br>2197                                                        | Account Manager<br>Address<br>Telephone<br>Date Samples Received<br>Date Analysis Commenced                                                                                                                                                                                                       | : Craig Riddell<br>: 1329 Niakwa Road East, Unit 12<br>Winnipeg MB Canada R2J 3T4<br>: +1 204 255 9720<br>: 03-Feb-2023 11:23<br>: 03-Mar-2023                               |  |
| Contact : Timothy<br>Address : 495-B M<br>Winnipe<br>Project :<br>Project :<br>Project :<br>Sampler :<br>Site :<br>Quote number : Mercury                      | Kroeker<br>Madison Street<br>ig MB Canada R3J 1J2<br>2197                                                        | Address<br>Telephone<br>Date Samples Received<br>Date Analysis Commenced                                                                                                                                                                                                                          | : Craig Riddell<br>: 1329 Niakwa Road East, Unit 12<br>Winnipeg MB Canada R2J 3T4<br>: +1 204 255 9720<br>: 03-Feb-2023 11:23<br>: 03-Mar-2023                               |  |
| viddress : 495-B M   Vinnipe : 204 452   Project :   ?O :   :O-O-C number :   isite :   Duote number : Mercury                                                 | fladison Street<br>vg MB Canada R3J 1J2<br>2 2197                                                                | Telephone<br>Date Samples Received<br>Date Analysis Commenced                                                                                                                                                                                                                                     | : 1329 Niakwa Road East, Unit 12<br>Winnipeg MB Canada R2J 3T4<br>: +1 204 255 9720<br>: 03-Feb-2023 11:23<br>: 03-Mar-2023                                                  |  |
| Felephone : 204 452   Project :   20 :   C-O-C number :   Sampler :   Site :   Quote number : Mercury                                                          | 2197                                                                                                             | Date Samples Received<br>Date Analysis Commenced                                                                                                                                                                                                                                                  | : +1 204 255 9720<br>: 03-Feb-2023 11:23<br>: 03-Mar-2023                                                                                                                    |  |
| Project :   PO :   PO-C number :   Sampler :   Site :   Quote number : Mercury                                                                                 |                                                                                                                  | Date Samples Received<br>Date Analysis Commenced                                                                                                                                                                                                                                                  | : 03-Feb-2023 11:23<br>: 03-Mar-2023                                                                                                                                         |  |
| 20 :   C-O-C number :   Sampler :   Site :   Quote number : Mercury                                                                                            |                                                                                                                  | Date Analysis Commenced                                                                                                                                                                                                                                                                           | : 03-Mar-2023                                                                                                                                                                |  |
| C-O-C number :<br>Sampler :<br>Site :<br>Quote number : Mercury                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |  |
| iampler :<br>iite :<br>Quote number : Mercury                                                                                                                  |                                                                                                                  | Issue Date                                                                                                                                                                                                                                                                                        | : 04-Apr-2023 15:05                                                                                                                                                          |  |
| Site :<br>Quote number : Mercury                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |  |
| Quote number : Mercury                                                                                                                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |  |
| . moroarj                                                                                                                                                      |                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |  |
| No. of samples received : 54                                                                                                                                   | r in Tissue                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |  |
|                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |  |
| No. of samples analysed : 54                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |  |
| Signatories<br>This document has been electronically si                                                                                                        | and by the authorized signatories below. Electronic                                                              | signing is conducted in accordance with                                                                                                                                                                                                                                                           | h LIS EDA 21 CED Part 11                                                                                                                                                     |  |
| Signatories                                                                                                                                                    |                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |  |
| Christine Mason<br>Dieksandr Busel                                                                                                                             |                                                                                                                  | Metals, Winnipeg, Manito                                                                                                                                                                                                                                                                          |                                                                                                                                                                              |  |



| t<br>Genera | vviidille Resou                   | urce Consulting Services MB Inc.                                                                                                                                                                                                                                                                                                  |
|-------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Genera      | 1                                 |                                                                                                                                                                                                                                                                                                                                   |
| renera      | al Comments                       |                                                                                                                                                                                                                                                                                                                                   |
|             |                                   |                                                                                                                                                                                                                                                                                                                                   |
| O, Envir    |                                   | LS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM,<br>E, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may<br>rformance. |
| here a re   | eported less than (<) result is h | higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.                                                                                                                                                                                                        |
|             |                                   | ers from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.                                                                                                                                                                                            |
| ease refe   | er to Quality Control Interpretiv | ve report (QCI) for information regarding Holding Time compliance.                                                                                                                                                                                                                                                                |
| ey:         | CAS Number: Chemical              | Abstracts Services number is a unique identifier assigned to discrete substances                                                                                                                                                                                                                                                  |
|             | LOR: Limit of Reporting           | (detection limit).                                                                                                                                                                                                                                                                                                                |
|             | Unit                              | Description                                                                                                                                                                                                                                                                                                                       |
|             | %                                 | percent                                                                                                                                                                                                                                                                                                                           |
|             | mg/kg wwt                         | milligrams per kilogram wet weight                                                                                                                                                                                                                                                                                                |
|             |                                   |                                                                                                                                                                                                                                                                                                                                   |
|             | <: less than.                     |                                                                                                                                                                                                                                                                                                                                   |
|             | >: greater than.                  |                                                                                                                                                                                                                                                                                                                                   |
|             | Surrogate: An analyte th          | nat is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis                                                                                                                                              |
|             |                                   |                                                                                                                                                                                                                                                                                                                                   |
|             | as a check on recovery.           |                                                                                                                                                                                                                                                                                                                                   |
| est results |                                   | 가는 것이다. 이 가지가 있는 것이 가지가 있었다. 것이가 안 있는 것이 가지 않는 것이 같은 것이다. 것이 있는 것이 않는 것이 가지가 가지 않는 것이 가지 않는 것이다. 것이 가지 않는 것이 가지 않는 것이다. 것이 가지 않는 것이다.<br>같은 것이다.<br>같은                                                                                                                                                                            |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | 가는 것이다. 이 가지가 있는 것이 가지가 있었다. 것이가 안 있는 것이 가지 않는 것이 같은 것이다. 것이 있는 것이 않는 것이 가지가 가지 않는 것이 가지 않는 것이다. 것이 가지 않는 것이 가지 않는 것이다. 것이 가지 않는 것이다.<br>같은 것이다.<br>같은                                                                                                                                                                            |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |
|             | s reported relate only to the sa  | amples as received by the laboratory.                                                                                                                                                                                                                                                                                             |

June 2023

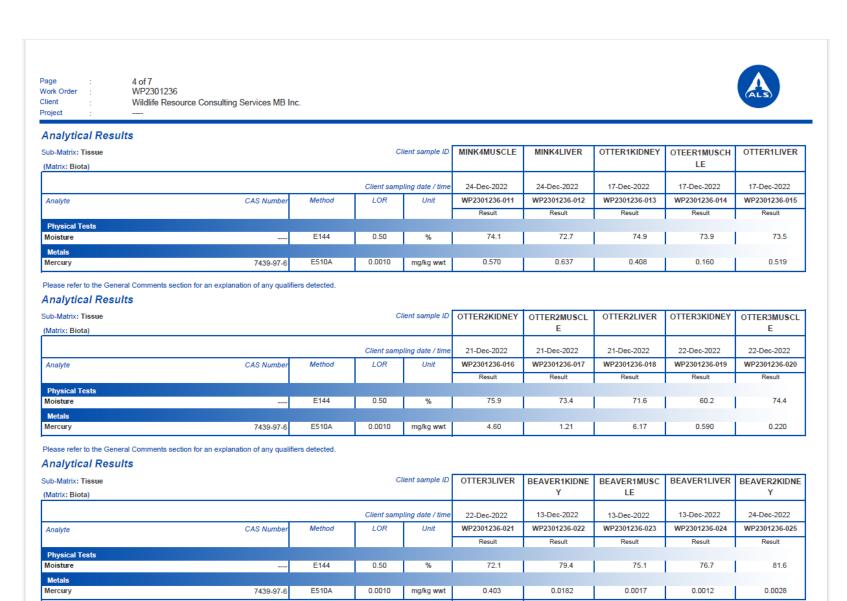
| Page       | : | 3 of 7                                        |
|------------|---|-----------------------------------------------|
| Work Order | 2 | WP2301236                                     |
| Client     | 1 | Wildlife Resource Consulting Services MB Inc. |
| Project    | 1 |                                               |



#### Analytical Results

| Sub-Matrix: Tissue          |            |        | CI     | ient sample ID | MINK1KIDNEY   | MINK1MUSCLE   | MINK1LIVER    | MINK2KIDNEY   | MINK2MUSCLE   |
|-----------------------------|------------|--------|--------|----------------|---------------|---------------|---------------|---------------|---------------|
| (Matrix: Biota)             |            |        |        |                |               |               |               |               |               |
| Client sampling date / time |            |        |        |                | 12-Dec-2022   | 12-Dec-2022   | 12-Dec-2022   | 12-Dec-2022   | 12-Dec-2022   |
| Analyte                     | CAS Number | Method | LOR    | Unit           | WP2301236-001 | WP2301236-002 | WP2301236-003 | WP2301236-004 | WP2301236-005 |
|                             |            |        |        |                | Result        | Result        | Result        | Result        | Result        |
| Physical Tests              |            |        |        |                |               |               |               |               |               |
| Moisture                    |            | E144   | 0.50   | %              | 71.0          | 76.2          | 70.0          | 72.8          | 74.8          |
| Metals                      |            |        |        |                |               |               |               |               |               |
| Mercury                     | 7439-97-6  | E510A  | 0.0010 | mg/kg wwt      | 0.558         | 0.314         | 0.418         | 0.566         | 0.699         |

Please refer to the General Comments section for an explanation of any qualifiers detected.


#### Analytical Results

| Sub-Matrix: Tissue |            |        | CI          | ient sample ID   | MINK2LIVER    | MINK3KIDNEY   | MINK3MUSCLE   | MINK3LIVER    | MINK4KIDNEY   |
|--------------------|------------|--------|-------------|------------------|---------------|---------------|---------------|---------------|---------------|
| (Matrix: Biota)    |            |        |             |                  |               |               |               |               |               |
|                    |            |        | Client samp | ling date / time | 12-Dec-2022   | 24-Dec-2022   | 24-Dec-2022   | 24-Dec-2022   | 24-Dec-2022   |
| Analyte            | CAS Number | Method | LOR         | Unit             | WP2301236-006 | WP2301236-007 | WP2301236-008 | WP2301236-009 | WP2301236-010 |
|                    |            |        |             |                  | Result        | Result        | Result        | Result        | Result        |
| Physical Tests     |            |        |             |                  |               |               |               |               |               |
| Moisture           |            | E144   | 0.50        | %                | 71.9          | 71.3          | 70.8          | 70.3          | 73.4          |
| Metals             |            |        |             |                  |               |               |               |               |               |
| Mercury            | 7439-97-6  | E510A  | 0.0010      | mg/kg wwt        | 0.587         | 1.56          | 1.25          | 2.14          | 0.849         |

Please refer to the General Comments section for an explanation of any qualifiers detected.

alsglobal.com





Please refer to the General Comments section for an explanation of any qualifiers detected.

alsglobal.com



5 of 7 Page WP2301236 Work Order Client Wildlife Resource Consulting Services MB Inc. Project Analytical Results BEAVER2LIVER Sub-Matrix: Tissue Client sample ID BEAVER2MUSC BEAVER3KIDNE BEAVER3MUSC BEAVER3LIVER LE Υ LE (Matrix: Biota) Client sampling date / time 24-Dec-2022 24-Dec-2022 24-Dec-2022 24-Dec-2022 24-Dec-2022 Analyte CAS Number Method LOR Unit WP2301236-026 WP2301236-027 WP2301236-028 WP2301236-029 WP2301236-030 Result Result Result Result Result Physical Tests Moisture E144 0.50 80.4 73.8 77.6 % 63.7 76.4 ----Metals E510A 0.0010 0.0017 0.0014 0.0043 0.0015 0.0012 Mercury 7439-97-6 mg/kg wwt Please refer to the General Comments section for an explanation of any qualifiers detected. Analytical Results Sub-Matrix: Tissue Client sample ID BEAVER4KIDNE BEAVER4MUSC BEAVER4LIVER BEAVER5KIDNE BEAVER5MUSC LE LE Υ Υ (Matrix: Biota) 27-Dec-2022 27-Dec-2022 27-Dec-2022 29-Dec-2022 29-Dec-2022 Client sampling date / time Method WP2301236-031 WP2301236-032 WP2301236-033 WP2301236-034 WP2301236-035 Analyte CAS Number LOR Unit Result Result Result Result Result Physical Tests Moisture E144 0.50 % 80.9 75.1 75.2 81.0 72.0 Metals Mercury E510A 0.0010 mg/kg wwt 0.0165 0.0019 0.0019 0.0027 0.0026 7439-97-6

Please refer to the General Comments section for an explanation of any qualifiers detected.

#### Analytical Results

| Sub-Matrix: Tissue |          |        | CI          | ient sample ID   | BEAVER5LIVER  | BEAVER6KIDNE  | BEAVER6MUSC   | BEAVER6LIVER  | MUSKRAT1KID   |
|--------------------|----------|--------|-------------|------------------|---------------|---------------|---------------|---------------|---------------|
| (Matrix: Biota)    |          |        |             |                  |               | Y             | LE            |               | NEY           |
|                    |          |        | Client samp | ling date / time | 29-Dec-2022   | 29-Dec-2022   | 29-Dec-2022   | 29-Dec-2022   | 14-Dec-2022   |
| Analyte CAS        | Number   | Method | LOR         | Unit             | WP2301236-036 | WP2301236-037 | WP2301236-038 | WP2301236-039 | WP2301236-040 |
|                    |          |        |             |                  | Result        | Result        | Result        | Result        | Result        |
| Physical Tests     |          |        |             |                  |               |               |               |               |               |
| Moisture           |          | E144   | 0.50        | %                | 79.3          | 78.8          | 70.8          | 75.0          | 80.3          |
| Metals             |          |        |             |                  |               |               |               |               |               |
| Mercury 7          | 439-97-6 | E510A  | 0.0010      | mg/kg wwt        | 0.0012        | 0.0056        | 0.0020        | 0.0017        | 0.102         |

Please refer to the General Comments section for an explanation of any qualifiers detected.

alsglobal.com





Please refer to the General Comments section for an explanation of any qualifiers detected.

7439-97-6

E510A

0.0010

#### Analytical Results

Mercury

| Sub-Matrix: Tissue |             |             | Cl          | ient sample ID | MUSKRAT3KID<br>NEY | MUSKRAT3MUS<br>CLE | MUSKRAT3LIVE<br>R | MUSKRAT4KID<br>NEY | MUSKRAT4MUS<br>CLE |
|--------------------|-------------|-------------|-------------|----------------|--------------------|--------------------|-------------------|--------------------|--------------------|
| (Matrix: Biota)    |             |             |             |                | NL I               | CLL                | ĸ                 | NL I               | CLL                |
|                    | 23-Dec-2022 | 23-Dec-2022 | 23-Dec-2022 | 26-Dec-2022    | 26-Dec-2022        |                    |                   |                    |                    |
| Analyte            | CAS Number  | Method      | LOR         | Unit           | WP2301236-046      | WP2301236-047      | WP2301236-048     | WP2301236-049      | WP2301236-050      |
|                    |             |             |             |                | Result             | Result             | Result            | Result             | Result             |
| Physical Tests     |             |             |             |                |                    |                    |                   |                    |                    |
| Moisture           |             | E144        | 0.50        | %              | 72.4               | 76.6               | 72.9              | 72.6               | 74.9               |
| Metals             |             |             |             |                |                    |                    |                   |                    |                    |
| Mercury            | 7439-97-6   | E510A       | 0.0010      | mg/kg wwt      | 0.0026             | 0.0117             | 0.0017            | 0.0037             | 0.0135             |

mg/kg wwt

0.0372

0.0578

0.0039

0.0088

0.0017

#### Please refer to the General Comments section for an explanation of any qualifiers detected.

#### Analytical Results

| Sub-Matrix: Tissue |            |        | CI          | ient sample ID   | MUSKRAT4LIVE  | MUSKRAT5KID   | MUSKRAT5MUS   | MUSKRAT5LIVE  |  |
|--------------------|------------|--------|-------------|------------------|---------------|---------------|---------------|---------------|--|
| (Matrix: Biota)    |            |        |             |                  | R             | NEY           | CLE           | R             |  |
|                    |            |        | Client samp | ling date / time | 26-Dec-2022   | 28-Dec-2022   | 28-Dec-2022   | 28-Dec-2022   |  |
| Analyte            | CAS Number | Method | LOR         | Unit             | WP2301236-051 | WP2301236-052 | WP2301236-053 | WP2301236-054 |  |
|                    |            |        |             |                  | Result        | Result        | Result        | Result        |  |
| Physical Tests     |            |        |             |                  |               |               |               |               |  |
| Moisture           |            | E144   | 0.50        | %                | 71.3          | 71.6          | 76.7          | 70.7          |  |
| Metals             |            |        |             |                  |               |               |               |               |  |
| Mercury            | 7439-97-6  | E510A  | 0.0010      | mg/kg wwt        | 0.0019        | 0.109         | 0.0390        | 0.0592        |  |

Please refer to the General Comments section for an explanation of any qualifiers detected.

alsglobal.com



#### KEEYASK GENERATION PROJECT



